Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MINet: Multi-scale Interactive Network for Real-time Salient Object Detection of Strip Steel Surface Defects (2405.16096v1)

Published 25 May 2024 in cs.CV

Abstract: The automated surface defect detection is a fundamental task in industrial production, and the existing saliencybased works overcome the challenging scenes and give promising detection results. However, the cutting-edge efforts often suffer from large parameter size, heavy computational cost, and slow inference speed, which heavily limits the practical applications. To this end, we devise a multi-scale interactive (MI) module, which employs depthwise convolution (DWConv) and pointwise convolution (PWConv) to independently extract and interactively fuse features of different scales, respectively. Particularly, the MI module can provide satisfactory characterization for defect regions with fewer parameters. Embarking on this module, we propose a lightweight Multi-scale Interactive Network (MINet) to conduct real-time salient object detection of strip steel surface defects. Comprehensive experimental results on SD-Saliency-900 dataset, which contains three kinds of strip steel surface defect detection images (i.e., inclusion, patches, and scratches), demonstrate that the proposed MINet presents comparable detection accuracy with the state-of-the-art methods while running at a GPU speed of 721FPS and a CPU speed of 6.3FPS for 368*368 images with only 0.28M parameters. The code is available at https://github.com/Kunye-Shen/MINet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. G. Song, K. Song, and Y. Yan, “Edrnet: Encoder–decoder residual network for salient object detection of strip steel surface defects,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, pp. 9709–9719, Dec. 2020.
  2. X. Zhou, H. Fang, Z. Liu, B. Zheng, Y. Sun, J. Zhang, and C. Yan, “Dense attention-guided cascaded network for salient object detection of strip steel surface defects,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–14, Dec. 2021.
  3. X. Zhou, H. Fang, X. Fei, R. Shi, and J. Zhang, “Edge-aware multi-level interactive network for salient object detection of strip steel surface defects,” IEEE Access, vol. 9, pp. 149 465–149 476, Nov. 2021.
  4. B. Wan, X. Zhou, B. Zheng, H. Yin, Z. Zhu, H. Wang, Y. Sun, J. Zhang, and C. Yan, “Lfrnet: Localizing, focus, and refinement network for salient object detection of surface defects,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–12, 2023.
  5. B. Wan, X. Zhou, B. Zhu, M. Xiao, Y. Sun, B. Zheng, J. Zhang, and C. Yan, “Canet: Context-aware aggregation network for salient object detection of surface defects,” J. Visual Commun. Image Represent., vol. 93, p. 103820, 2023.
  6. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556, 2014.
  7. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.
  8. H. Dong, K. Song, Y. He, J. Xu, Y. Yan, and Q. Meng, “Pga-net: Pyramid feature fusion and global context attention network for automated surface defect detection,” IEEE Trans. Ind. Inform., vol. 16, no. 12, pp. 7448–7458, Dec. 2019.
  9. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv:1704.04861, 2017.
  10. X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural network for mobile devices,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848–6856.
  11. Y. Liu, X.-Y. Zhang, J.-W. Bian, L. Zhang, and M.-M. Cheng, “Samnet: Stereoscopically attentive multi-scale network for lightweight salient object detection,” IEEE Trans. Image Process., vol. 30, pp. 3804–3814, Mar. 2021.
  12. Y.-H. Wu, Y. Liu, L. Zhang, M.-M. Cheng, and B. Ren, “Edn: Salient object detection via extremely-downsampled network,” IEEE Trans. Image Process., vol. 31, pp. 3125–3136, Apr. 2022.
  13. Y. Liu, Y.-C. Gu, X.-Y. Zhang, W. Wang, and M.-M. Cheng, “Lightweight salient object detection via hierarchical visual perception learning,” IEEE Trans. Cybern., vol. 51, no. 9, pp. 4439–4449, Dec. 2020.
  14. K. Shen, X. Zhou, B. Wan, R. Shi, and J. Zhang, “Fully squeezed multiscale inference network for fast and accurate saliency detection in optical remote-sensing images,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, Mar. 2022.
  15. P. K. A. Vasu, J. Gabriel, J. Zhu, O. Tuzel, and A. Ranjan, “Mobileone: An improved one millisecond mobile backbone,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2023, pp. 7907–7917.
  16. X. Ni, Z. Ma, J. Liu, B. Shi, and H. Liu, “Attention network for rail surface defect detection via consistency of intersection-over-union (iou)-guided center-point estimation,” IEEE Trans. Ind. Inform., vol. 18, no. 3, pp. 1694–1705, Jun. 2021.
  17. C. Song, J. Chen, Z. Lu, F. Li, and Y. Liu, “Steel surface defect detection via deformable convolution and background suppression,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–9, May 2023.
  18. C.-C. Yeung and K.-M. Lam, “Efficient fused-attention model for steel surface defect detection,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, May 2022.
  19. S. Ma, K. Song, M. Niu, H. Tian, Y. Wang, and Y. Yan, “Shape consistent one-shot unsupervised domain adaptation for rail surface defect segmentation,” IEEE Trans. Ind. Inform., pp. 1–12, Jan. 2023.
  20. T. Liu and Z. He, “Tas2-net: Triple-attention semantic segmentation network for small surface defect detection,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, Jan. 2022.
  21. C. Han, G. Li, and Z. Liu, “Two-stage edge reuse network for salient object detection of strip steel surface defects,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, Aug. 2022.
  22. T. Ding, G. Li, Z. Liu, and Y. Wang, “Cross-scale edge purification network for salient object detection of steel defect images,” Measurement, vol. 199, p. 111429, Aug. 2022.
  23. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,” arXiv:1602.07360, 2016.
  24. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 6105–6114.
  25. C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral segmentation network for real-time semantic segmentation,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 325–341.
  26. Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, and L. J. Latecki, “Lednet: A lightweight encoder-decoder network for real-time semantic segmentation,” in Proc. IEEE Int. Conf. Image Process.   IEEE, 2019, pp. 1860–1864.
  27. T. Wu, S. Tang, R. Zhang, J. Cao, and Y. Zhang, “Cgnet: A light-weight context guided network for semantic segmentation,” IEEE Trans. Image Process., vol. 30, pp. 1169–1179, Dec. 2020.
  28. X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand, “Basnet: Boundary-aware salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 7479–7489.
  29. X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand, “U2-net: Going deeper with nested u-structure for salient object detection,” Pattern Recogn., vol. 106, p. 107404, Oct. 2020.
  30. J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple pooling-based design for real-time salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3917–3926.
  31. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in Proc. IEEE 37th Asilomar Conf. Signals, Syst. Comput., 2003, pp. 1398–1402.
  32. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proc. Int. Conf. Artif. Intell. Statistics, 2010, pp. 249–256.
  33. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2014.
  34. Z. Wu, L. Su, and Q. Huang, “Cascaded partial decoder for fast and accurate salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3907–3916.
  35. J. Wei, S. Wang, and Q. Huang, “F3net: fusion, feedback and focus for salient object detection,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 12 321–12 328.
  36. H. Zhou, X. Xie, J.-H. Lai, Z. Chen, and L. Yang, “Interactive two-stream decoder for accurate and fast saliency detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9141–9150.
  37. J. Li, Z. Pan, Q. Liu, and Z. Wang, “Stacked u-shape network with channel-wise attention for salient object detection,” IEEE Trans. Multimedia, vol. 23, pp. 1397–1409, May 2020.
  38. S.-H. Gao, Y.-Q. Tan, M.-M. Cheng, C. Lu, Y. Chen, and S. Yan, “Highly efficient salient object detection with 100k parameters,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 702–721.
  39. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2980–2988.
  40. M. Berman, A. R. Triki, and M. B. Blaschko, “The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4413–4421.
  41. K. Xiang, K. Wang, and K. Yang, “Importance-aware semantic segmentation with efficient pyramidal context network for navigational assistant systems,” in Proc. IEEE Conf. Intell. Transport. Syst., 2019, pp. 3412–3418.
  42. A. Mukhopadhyay, L. Murthy, I. Mukherjee, and P. Biswas, “A hybrid lane detection model for wild road conditions,” IEEE Trans. Artif. Intell., Oct. 2022.
  43. H. Hu, Y. Liu, M. Liu, and L. Nie, “Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm,” Neurocomputing, vol. 181, pp. 86–95, Mar. 2016.
  44. L. Xu, H. Xu, X. Li, and M. Pan, “A defect inspection for explosive cartridge using an improved visual attention and image-weighted eigenvalue,” IEEE Trans. Instrum. Meas., vol. 69, no. 4, pp. 1191–1204, Apr. 2019.
  45. K. Song, J. Wang, Y. Bao, L. Huang, and Y. Yan, “A novel visible-depth-thermal image dataset of salient object detection for robotic visual perception,” IEEE ASME Trans. Mechatron., vol. 28, no. 3, Jun. 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kunye Shen (1 paper)
  2. Xiaofei Zhou (14 papers)
  3. Zhi Liu (155 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com