A new approach to strong convergence (2405.16026v3)
Abstract: A family of random matrices $\boldsymbol{X}N=(X_1N,\ldots,X_dN)$ is said to converge strongly to a family of bounded operators $\boldsymbol{x}=(x_1,\ldots,x_d)$ when $|P(\boldsymbol{X}N,\boldsymbol{X}{N*})|\to|P(\boldsymbol{x}, \boldsymbol{x}*)|$ for every noncommutative polynomial $P$. This phenomenon plays a key role in several recent breakthroughs on random graphs, geometry, and operator algebras. However, proofs of strong convergence are notoriously delicate and have relied largely on problem-specific methods. In this paper, we develop a new approach to strong convergence that uses only soft arguments. Our method exploits the fact that for many natural models, the expected trace of $P(\boldsymbol{X}N,\boldsymbol{X}{N*})$ is a rational function of $\frac{1}{N}$ whose lowest order asymptotics are easily understood. We develop a general technique to deduce strong convergence directly from these inputs using the inequality of A. and V. Markov for univariate polynomials and elementary Fourier analysis. To illustrate the method, we develop the following applications. 1. We give a short proof of the result of Friedman that random regular graphs have a near-optimal spectral gap, and obtain a sharp understanding of the large deviations probabilities of the second eigenvalue. 2. We prove a strong quantitative form of the strong convergence property of random permutation matrices due to Bordenave and Collins. 3. We extend the above to any stable representation of the symmetric group, providing many new examples of the strong convergence phenomenon.
- S. Aaronson. The polynomial method in quantum and classical computing. In Proc. 49th IEEE Symposium on Foundations of Computer Science, page 3. IEEE, 2008.
- Matrix concentration inequalities and free probability. Invent. Math., 234(1):419–487, 2023.
- S. Belinschi and M. Capitaine. Strong convergence of tensor products of independent GUE matrices, 2022. Preprint arXiv:2205.07695.
- C. Bordenave. A new proof of Friedman’s second eigenvalue theorem and its extension to random lifts. Ann. Sci. Éc. Norm. Supér. (4), 53(6):1393–1439, 2020.
- C. Bordenave and B. Collins. Eigenvalues of random lifts and polynomials of random permutation matrices. Ann. of Math. (2), 190(3):811–875, 2019.
- C. Bordenave and B. Collins. Strong asymptotic freeness for independent uniform variables on compact groups associated to non-trivial representations, 2020. Preprint arxiv:2012.08759.
- C. Bordenave and B. Collins. Norm of matrix-valued polynomials in random unitaries and permutations, 2024. Preprint arxiv:2304.05714v2.
- P. Borwein and T. Erdélyi. Polynomials and polynomial inequalities, volume 161 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- J. Bourgain and L. Tzafriri. On a problem of Kadison and Singer. J. Reine Angew. Math., 420:1–43, 1991.
- T. Brailovskaya and R. van Handel. Universality and sharp matrix concentration inequalities, 2023. Preprint arxiv:2201.05142v2.
- E. Cassidy, 2024. In preparation.
- Efficient unitary designs and pseudorandom unitaries from permutations, 2024. Preprint arxiv:2404.16751.
- Efficient unitary t𝑡titalic_t-designs from random sums, 2024. Preprint arxiv:2402.09335.
- E. W. Cheney. Introduction to approximation theory. AMS, Providence, RI, 1998.
- M. D. Choi. The full C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebra of the free group on two generators. Pacific J. Math., 87(1):41–48, 1980.
- FI-modules and stability for representations of symmetric groups. Duke Math. J., 164(9):1833–1910, 2015.
- B. Collins. Moment methods on compact groups: Weingarten calculus and its applications. In ICM Vol. IV. Sections 5–8, pages 3142–3164. EMS Press, Berlin, 2023.
- On the operator norm of non-commutative polynomials in deterministic matrices and iid GUE matrices. Camb. J. Math., 10(1):195–260, 2022.
- The Weingarten calculus. Notices Amer. Math. Soc., 69(5):734–745, 2022.
- D. Coppersmith and T. J. Rivlin. The growth of polynomials bounded at equally spaced points. SIAM J. Math. Anal., 23(4):970–983, 1992.
- R. Estrada and R. P. Kanwal. Moment sequences for a certain class of distributions. Complex Variables Theory Appl., 9(1):31–39, 1987.
- B. Farb. Representation stability. In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, pages 1173–1196. Kyung Moon Sa, Seoul, 2014.
- J. Friedman. Relative expanders or weakly relatively Ramanujan graphs. Duke Math. J., 118(1):19–35, 2003.
- J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc., 195(910):viii+100, 2008.
- The action of a few random permutations on r𝑟ritalic_r-tuples and an application to cryptography. In STACS 96 (Grenoble, 1996), volume 1046 of Lecture Notes in Comput. Sci., pages 375–386. Springer, Berlin, 1996.
- A random matrix approach to the lack of projections in Cred∗(𝔽2)subscriptsuperscript𝐶redsubscript𝔽2C^{*}_{\rm red}(\mathbb{F}_{2})italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_red end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Adv. Math., 204(1):1–83, 2006.
- U. Haagerup and S. Thorbjørnsen. A new application of random matrices: Ext(Cred∗(F2))Extsubscriptsuperscript𝐶redsubscript𝐹2{\rm Ext}(C^{*}_{\rm red}(F_{2}))roman_Ext ( italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_red end_POSTSUBSCRIPT ( italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) is not a group. Ann. of Math. (2), 162(2):711–775, 2005.
- L. Hanany and D. Puder. Word measures on symmetric groups. Int. Math. Res. Not. IMRN, (11):9221–9297, 2023.
- Classical and quantum tensor product expanders. Quantum Inf. Comput., 9(3-4):336–360, 2009.
- B. Hayes. A random matrix approach to the Peterson-Thom conjecture. Indiana Univ. Math. J., 71(3):1243–1297, 2022.
- W. Hide. Effective lower bounds for spectra of random covers and random unitary bundles, 2023. Preprint arxiv:2305.04584.
- W. Hide and M. Magee. Near optimal spectral gaps for hyperbolic surfaces. Ann. of Math. (2), 198(2):791–824, 2023.
- L. Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis.
- Optimal eigenvalue rigidity of random regular graphs, 2024. Preprint arxiv:2405.12161.
- J. Huang and H.-T. Yau. Spectrum of random d𝑑ditalic_d-regular graphs up to the edge. Comm. Pure Appl. Math., 77(3):1635–1723, 2024.
- H. Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc., 92:336–354, 1959.
- F. Lehner. Computing norms of free operators with matrix coefficients. Amer. J. Math., 121(3):453–486, 1999.
- N. Linial and D. Puder. Word maps and spectra of random graph lifts. Random Structures Algorithms, 37(1):100–135, 2010.
- L. Louder and M. Magee. Strongly convergent unitary representations of limit groups, 2023. With an appendix by W. Hide and M. Magee. Preprint arxiv:2210.08953.
- Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition.
- M. Magee and J. Thomas. Strongly convergent unitary representations of right-angled Artin groups, 2023. Preprint arxiv:2308.00863.
- J. A. Mingo and R. Speicher. Free probability and random matrices, volume 35 of Fields Institute Monographs. Springer, New York, 2017.
- A. Nica. Asymptotically free families of random unitaries in symmetric groups. Pacific J. Math., 157(2):295–310, 1993.
- A. Nica. On the number of cycles of given length of a free word in several random permutations. Random Structures Algorithms, 5(5):703–730, 1994.
- A. Nica and R. Speicher. Lectures on the combinatorics of free probability. Cambridge, 2006.
- A. Nilli. On the second eigenvalue of a graph. Discrete Math., 91(2):207–210, 1991.
- F. Parraud. On the operator norm of non-commutative polynomials in deterministic matrices and iid Haar unitary matrices. Probab. Theory Related Fields, 182(3-4):751–806, 2022.
- F. Parraud. Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices. Comm. Math. Phys., 399(1):249–294, 2023.
- G. Pisier. On a linearization trick. Enseign. Math., 64(3-4):315–326, 2018.
- D. Puder. Expansion of random graphs: new proofs, new results. Invent. Math., 201(3):845–908, 2015.
- I. Rivin and N. T. Sardari. Quantum chaos on random Cayley graphs of SL2[ℤ/pℤ]subscriptSL2delimited-[]ℤ𝑝ℤ{\rm SL}_{2}[\mathbb{Z}/p\mathbb{Z}]roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ blackboard_Z / italic_p blackboard_Z ]. Exp. Math., 28(3):328–341, 2019.
- H. Schultz. Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases. Probab. Theory Related Fields, 131(2):261–309, 2005.
- A. Song. Random minimal surfaces in spheres, 2024. Preprint arxiv:2402.10287.
- V. Vu. Random discrete matrices. In Horizons of combinatorics, volume 17 of Bolyai Soc. Math. Stud., pages 257–280. Springer, Berlin, 2008.
- A. Zygmund. Trigonometric series. Vol. I, II. Cambridge, third edition, 2002.