Multi-frequency control and measurement of a spin-7/2 system encoded in a transmon qudit (2405.15857v1)
Abstract: Qudits hold great promise for efficient quantum computation and the simulation of high-dimensional quantum systems. Utilizing a local Hilbert space of dimension d > 2 is known to speed up certain quantum algorithms relative to their qubit counterparts given efficient local qudit control and measurement. However, the direct realization of high-dimensional rotations and projectors has proved challenging, with most experiments relying on decompositions of SU(d) operations into series of rotations between two-level subspaces of adjacent states and projective readout of a small number of states. Here we employ simultaneous multi-frequency drives to generate rotations and projections in an effective spin-7/2 system by mapping it onto the energy eigenstates of a superconducting circuit. We implement single-shot readout of the 8 states using a multi-tone dispersive readout (F_assignment = 88.3%) and exploit the strong nonlinearity in a high EJ/EC transmon to simultaneously address each transition and realize a spin displacement operator. By combining the displacement operator with a virtual SNAP gate, we realize arbitrary single-qudit unitary operations in O(d) physical pulses and extract spin displacement gate fidelities ranging from 0.997 to 0.989 for virtual spins of size j = 1 to j = 7/2. These native qudit operations could be combined with entangling operations to explore qudit-based error correction or simulations of lattice gauge theories with qudits. Our multi-frequency approach to qudit control and measurement can be readily extended to other physical platforms that realize a multi-level system coupled to a cavity and can become a building block for efficient qudit-based quantum computation and simulation.
- Qudits and High-Dimensional Quantum Computing. Frontiers in Physics 8, 479 (2020). URL https://www.frontiersin.org/article/10.3389/fphy.2020.589504.
- Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nature Communications 5 (2014). URL http://www.nature.com/ncomms/2014/140228/ncomms4371/abs/ncomms4371.html.
- Asaad, S. et al. Coherent electrical control of a single high-spin nucleus in silicon. Nature 579, 205–209 (2020). URL https://www.nature.com/articles/s41586-020-2057-7.
- Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nature Physics 18, 1053–1057 (2022). URL https://www.nature.com/articles/s41567-022-01658-0.
- Chi, Y. et al. A programmable qudit-based quantum processor. Nature Communications 13, 1166 (2022). URL https://www.nature.com/articles/s41467-022-28767-x.
- Bianchetti, R. et al. Control and Tomography of a Three Level Superconducting Artificial Atom. Physical Review Letters 105, 223601 (2010). URL https://link.aps.org/doi/10.1103/PhysRevLett.105.223601.
- Gross, J. A. Designing codes around interactions: The case of a spin. Phys. Rev. Lett. 127, 010504 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.127.010504.
- Campbell, E. T. Enhanced Fault-Tolerant Quantum Computing in $d$-Level Systems. Physical Review Letters 113, 230501 (2014). URL https://link.aps.org/doi/10.1103/PhysRevLett.113.230501.
- Bauer, C. W. et al. Quantum Simulation for High-Energy Physics. PRX Quantum 4, 027001 (2023). URL https://link.aps.org/doi/10.1103/PRXQuantum.4.027001.
- Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268–272 (2023). URL https://www.nature.com/articles/s41586-023-06481-y.
- Chen, J.-S. et al. Benchmarking a trapped-ion quantum computer with 29 algorithmic qubits (2023). URL http://arxiv.org/abs/2308.05071.
- Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023). URL https://www.nature.com/articles/s41586-022-05434-1.
- Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022). URL https://www.nature.com/articles/s41586-021-04273-w.
- Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023). URL https://www.nature.com/articles/s41586-023-05784-4.
- Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023). URL https://www.nature.com/articles/s41586-023-05782-6.
- Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes. Physical Review X 2, 041021 (2012). URL https://link.aps.org/doi/10.1103/PhysRevX.2.041021.
- Gokhale, P. et al. Asymptotic Improvements to Quantum Circuits via Qutrits. Proceedings of the 46th International Symposium on Computer Architecture - ISCA ’19 554–566 (2019). URL http://arxiv.org/abs/1905.10481.
- Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis. Physical Review D 103, 094501 (2021). URL https://link.aps.org/doi/10.1103/PhysRevD.103.094501.
- Hardware Efficient Quantum Simulation of Non-Abelian Gauge Theories with Qudits on Rydberg Platforms. Physical Review Letters 129, 160501 (2022). URL https://link.aps.org/doi/10.1103/PhysRevLett.129.160501.
- Gustafson, E. J. Prospects for simulating a qudit-based model of $(1+1)\mathrm{D}$ scalar QED. Physical Review D 103, 114505 (2021). URL https://link.aps.org/doi/10.1103/PhysRevD.103.114505.
- Hubbard model for spin-1 Haldane chains. Physical Review B 105, L081116 (2022). URL https://link.aps.org/doi/10.1103/PhysRevB.105.L081116.
- Gong, Z.-X. et al. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain. Physical Review B 93, 205115 (2016). URL https://link.aps.org/doi/10.1103/PhysRevB.93.205115.
- Blok, M. et al. Quantum Information Scrambling on a Superconducting Qutrit Processor. Physical Review X 11, 021010 (2021). URL https://link.aps.org/doi/10.1103/PhysRevX.11.021010.
- Peterer, M. J. et al. Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.114.010501.
- Wu, X. et al. High-fidelity software-defined quantum logic on a superconducting qudit. Phys. Rev. Lett. 125, 170502 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.125.170502.
- Chen, L. et al. Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier. npj Quantum Information 9, 26 (2023). URL https://doi.org/10.1038/s41534-023-00689-6.
- Nguyen, L. B. et al. Empowering high-dimensional quantum computing by traversing the dual bosonic ladder (2023). URL http://arxiv.org/abs/2312.17741.
- Improving transmon qudit measurement on ibm quantum hardware. Phys. Rev. Res. 6, 013050 (2024). URL https://link.aps.org/doi/10.1103/PhysRevResearch.6.013050.
- Cao, S. et al. Emulating two qubits with a four-level transmon qudit for variational quantum algorithms. Quantum Science and Technology (2024). URL http://iopscience.iop.org/article/10.1088/2058-9565/ad37d4.
- Liu, P. et al. Performing $\mathrm{SU}(d)$ Operations and Rudimentary Algorithms in a Superconducting Transmon Qudit for $d=3$ and $d=4$. Physical Review X 13, 021028 (2023). URL https://link.aps.org/doi/10.1103/PhysRevX.13.021028.
- Morvan, A. et al. Qutrit Randomized Benchmarking. Physical Review Letters 126, 210504 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.126.210504.
- Seifert, L. M. et al. Exploring ququart computation on a transmon using optimal control. Phys. Rev. A 108, 062609 (2023). URL https://link.aps.org/doi/10.1103/PhysRevA.108.062609.
- Implementation of a walsh-hadamard gate in a superconducting qutrit. Phys. Rev. Lett. 125, 180504 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.125.180504.
- Neeley, M. et al. Emulation of a Quantum Spin with a Superconducting Phase Qudit. Science 325, 722–725 (2009). URL https://www.science.org/doi/10.1126/science.1173440.
- Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007). URL https://link.aps.org/doi/10.1103/PhysRevA.76.042319.
- Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021). URL https://link.aps.org/doi/10.1103/RevModPhys.93.025005.
- Perelomov, A. M. Generalized coherent states and some of their applications. Soviet Physics Uspekhi 20, 703 (1977). URL https://dx.doi.org/10.1070/PU1977v020n09ABEH005459.
- Wigner negativity in spin-j𝑗jitalic_j systems. Phys. Rev. Res. 3, 033134 (2021). URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.033134.
- Stratonovich, R. L. On distributions in representation space. Journal of Experimental and Theoretical Physics 4, 891 (1957).
- Discrete moyal-type representations for a spin. Phys. Rev. A 63, 012105 (2000). URL https://link.aps.org/doi/10.1103/PhysRevA.63.012105.
- Simple factorization of unitary transformations. Phys. Rev. A 97, 022328 (2018). URL https://link.aps.org/doi/10.1103/PhysRevA.97.022328.
- Heeres, R. W. et al. Cavity state manipulation using photon-number selective phase gates. Phys. Rev. Lett. 115, 137002 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.137002.
- Krastanov, S. et al. Universal control of an oscillator with dispersive coupling to a qubit. Phys. Rev. A 92, 040303 (2015). URL https://link.aps.org/doi/10.1103/PhysRevA.92.040303.
- Kudra, M. et al. Robust preparation of wigner-negative states with optimized snap-displacement sequences. PRX Quantum 3, 030301 (2022). URL https://link.aps.org/doi/10.1103/PRXQuantum.3.030301.
- Ma, W.-L. et al. Quantum control of bosonic modes with superconducting circuits. Science Bulletin 66, 1789–1805 (2021). URL https://www.sciencedirect.com/science/article/pii/S2095927321004011.
- Efficient $Z$ gates for quantum computing. Physical Review A 96, 022330 (2017). URL https://link.aps.org/doi/10.1103/PhysRevA.96.022330.
- Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nature Communications 8, 94 (2017). URL https://doi.org/10.1038/s41467-017-00045-1.
- Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 85, 042311 (2012). URL https://link.aps.org/doi/10.1103/PhysRevA.85.042311.
- Tunable, flexible, and efficient optimization of control pulses for practical qubits. Phys. Rev. Lett. 120, 150401 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.120.150401.
- Investigating the limits of randomized benchmarking protocols. Phys. Rev. A 89, 062321 (2014). URL https://link.aps.org/doi/10.1103/PhysRevA.89.062321.
- Wang, C. et al. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Information 8, 3 (2022). URL https://doi.org/10.1038/s41534-021-00510-2.
- Hassani, F. et al. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications 14, 3968 (2023). URL https://doi.org/10.1038/s41467-023-39656-2.
- Goss, N. et al. High-fidelity qutrit entangling gates for superconducting circuits. Nature Communications 13, 7481 (2022). URL https://www.nature.com/articles/s41467-022-34851-z.
- Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001). URL https://link.aps.org/doi/10.1103/PhysRevA.64.012310.
- Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016). URL https://doi.org/10.1038/nature18949.
- Grimm, A. et al. Stabilization and operation of a kerr-cat qubit. Nature 584, 205–209 (2020). URL https://doi.org/10.1038/s41586-020-2587-z.
- Fault-tolerant quantum computation using large spin cat-codes (2024). eprint 2401.04271.
- Qu8its for Quantum Simulations of Lattice Quantum Chromodynamics (2024). URL http://arxiv.org/abs/2403.14537.
- Roy, S. et al. Synthetic high angular momentum spin dynamics in microwave oscillator (In preparation).
- Yu, X. et al. Creation and manipulation of schrödinger cat states of a single nuclear spin qudit in silicon (In preparation).
- Shillito, R. et al. Dynamics of transmon ionization. Phys. Rev. Appl. 18, 034031 (2022). URL https://link.aps.org/doi/10.1103/PhysRevApplied.18.034031.
- Lloyd, S. Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995). URL https://link.aps.org/doi/10.1103/PhysRevLett.75.346.
- Scqubits: a Python package for superconducting qubits. Quantum 5, 583 (2021). URL https://doi.org/10.22331/q-2021-11-17-583.
- Computer-aided quantization and numerical analysis of superconducting circuits. New Journal of Physics 24, 103020 (2022). URL https://dx.doi.org/10.1088/1367-2630/ac94f2.
- Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications 184, 1234–1240 (2013). URL https://www.sciencedirect.com/science/article/pii/S0010465512003955.
- Random quantum operations. Physics Letters A 373, 320–324 (2009). URL https://www.sciencedirect.com/science/article/pii/S0375960108016885.