Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Access Control for IoT -- A Blockchain Approach (2405.15749v1)

Published 24 May 2024 in cs.DC and cs.CR

Abstract: The Internet of Things (IoT) necessitates robust access control mechanisms to secure a vast array of interconnected devices. Most of the existing IoT systems in practice use centralized solutions. We identify the problems in such solutions and adopt the blockchain based decentralized access control approach. Though there are works in the literature that use blockchain for access control, there are some gaps in these works. We develop a blockchain embedded access control (BEAC) framework to bridge the gaps. First, blockchain based solutions for access control require an enabling P2P network while existing P2P overlays do not support some required features. We develop a novel P2P infrastructure to seamlessly support our BEAC framework. Second, most of the works consider blockchain based access control for a single access control model, and we develop a generic blockchain mechanism and show that it can support the embedding of various access control models. Finally, existing works adopt existing blockchain mechanisms which may incur a high communication overhead. We develop a shortcut approach to improve the number of message rounds in the access protocol. Our experiments demonstrate the efficacy of our system, showing that the shortcut mechanism can reduces access time by approximately 43%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. D. Di Francesco Maesa, P. Mori, and L. Ricci, “Blockchain Based Access Control,” in Distributed Applications and Interoperable Systems, L. Y. Chen and H. P. Reiser, Eds.   Cham: Springer International Publishing, 2017, vol. 10320, pp. 206–220, series Title: Lecture Notes in Computer Science. [Online]. Available: https://link.springer.com/10.1007/978-3-319-59665-5_15
  2. O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–1195, Apr. 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8306880/
  3. O. Alphand, M. Amoretti, T. Claeys, S. Dall’Asta, A. Duda, G. Ferrari, F. Rousseau, B. Tourancheau, L. Veltri, and F. Zanichelli, “IoTChain: A blockchain security architecture for the Internet of Things,” in 2018 IEEE Wireless Communications and Networking Conference (WCNC).   Barcelona: IEEE, Apr. 2018, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/8377385/
  4. Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart Contract-Based Access Control for the Internet of Things,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1594–1605, Apr. 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8386853/
  5. P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Information System Based on the XOR Metric,” in Peer-to-Peer Systems, G. Goos, J. Hartmanis, J. Van Leeuwen, P. Druschel, F. Kaashoek, and A. Rowstron, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, vol. 2429, pp. 53–65, series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/3-540-45748-8_5
  6. F. R. Bordignon and G. H. Tolosa, “Gnutella: Distributed System for Information Storage and Searching Model Description,” J. Internet Technology, vol. 2, no. 2, pp. 171–184, 2001, publisher: Citeseer. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdfdoi=2abeb6a2530e8f0c49a30b6b1d823a64ae5c5fd9
  7. “libp2p/go-libp2p,” Mar. 2024, original-date: 2015-09-30T23:24:32Z. [Online]. Available: https://github.com/libp2p/go-libp2p
  8. M. Seemann, M. Inden, and D. Vyzovitis, “Decentralized Hole Punching,” in 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW).   Bologna, Italy: IEEE, Jul. 2022, pp. 96–98. [Online]. Available: https://ieeexplore.ieee.org/document/9951368/
  9. D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras, “GossipSub: Attack-Resilient Message Propagation in the Filecoin and ETH2.0 Networks,” Jul. 2020, arXiv:2007.02754 [cs]. [Online]. Available: http://arxiv.org/abs/2007.02754
  10. M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “HotStuff: BFT Consensus with Linearity and Responsiveness,” in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.   Toronto ON Canada: ACM, Jul. 2019, pp. 347–356. [Online]. Available: https://dl.acm.org/doi/10.1145/3293611.3331591
  11. R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and Z. Xiang, “Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback,” in Financial Cryptography and Data Security, I. Eyal and J. Garay, Eds.   Cham: Springer International Publishing, 2022, pp. 296–315.
  12. Z. Gao, Y. Hu, and Q. Wu, “Jellyfish Merkle Tree,” Diem Association, Tech. Rep., Jan. 2021. [Online]. Available: https://developers.diem.com/docs/technical-papers/jellyfish-merkle-tree-paper
  13. Z. Amsden, R. Arora, S. Bano, M. Baudet, S. Blackshear, A. Bothra, G. Cabrera, C. Catalini, K. Chalkias, E. Cheng, A. Ching, A. Chursin, G. Danezis, G. D. Giacomo, D. L. Dill, H. Ding, N. Doudchenko, V. Gao, Z. Gao, F. Garillot, M. Gorven, P. Hayes, J. M. Hou, Y. Hu, K. Hurley, K. Lewi, C. Li, Z. Li, D. Malkhi, S. Margulis, B. Maurer, P. Mohassel, L. de Naurois, V. Nikolaenko, T. Nowacki, O. Orlov, D. Perelman, A. Pott, B. Proctor, S. Qadeer, D. Russi, B. Schwab, S. Sezer, A. Sonnino, H. Venter, L. Wei, N. Wernerfelt, B. Williams, Q. Wu, X. Yan, T. Zakian, and R. Zhou, “The Libra Blockchain,” Diem Association, Tech. Rep., May 2020. [Online]. Available: https://developers.diem.com/docs/technical-papers/the-diem-blockchain-paper
  14. C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux security module framework,” in Ottawa Linux Symposium, vol. 8032, 2002, pp. 6–16. [Online]. Available: https://kernel.org/doc/mirror/ols2002.pdf#page=604
  15. B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for computer networks,” IEEE Communications magazine, vol. 32, no. 9, pp. 33–38, 1994, publisher: IEEE. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/312841/
  16. D. M’Raihi, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-Time Password Algorithm,” Internet Engineering Task Force, Request for Comments RFC 6238, May 2011, num Pages: 16. [Online]. Available: https://datatracker.ietf.org/doc/rfc6238
  17. Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-MVBA: Optimal Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited,” in Proceedings of the 39th Symposium on Principles of Distributed Computing.   Virtual Event Italy: ACM, Jul. 2020, pp. 129–138. [Online]. Available: https://dl.acm.org/doi/10.1145/3382734.3405707
  18. D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras, “Gossipsub-v1.1 Evaluation Report,” Protocol Labs, Tech. Rep., Apr. 2020. [Online]. Available: https://research.protocol.ai/publications/gossipsub-v1.1-evaluation-report/
  19. IPFS, “libp2p NAT Hole Punching Success Rate - @dennis-tra - Measuring IPFS,” Aug. 2022. [Online]. Available: https://www.youtube.com/watch?v=fyhZWlDbcyM
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yongtao Huang (2 papers)
  2. I-Ling Yen (7 papers)
  3. Farokh Bastani (6 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com