Anomalous Change Point Detection Using Probabilistic Predictive Coding (2405.15727v1)
Abstract: Change point detection (CPD) and anomaly detection (AD) are essential techniques in various fields to identify abrupt changes or abnormal data instances. However, existing methods are often constrained to univariate data, face scalability challenges with large datasets due to computational demands, and experience reduced performance with high-dimensional or intricate data, as well as hidden anomalies. Furthermore, they often lack interpretability and adaptability to domain-specific knowledge, which limits their versatility across different fields. In this work, we propose a deep learning-based CPD/AD method called Probabilistic Predictive Coding (PPC) that jointly learns to encode sequential data to low dimensional latent space representations and to predict the subsequent data representations as well as the corresponding prediction uncertainties. The model parameters are optimized with maximum likelihood estimation by comparing these predictions with the true encodings. At the time of application, the true and predicted encodings are used to determine the probability of conformity, an interpretable and meaningful anomaly score. Furthermore, our approach has linear time complexity, scalability issues are prevented, and the method can easily be adjusted to a wide range of data types and intricate applications. We demonstrate the effectiveness and adaptability of our proposed method across synthetic time series experiments, image data, and real-world magnetic resonance spectroscopic imaging data.
- \bibcommenthead
- \APACrefYearMonthDay20216. \BBOQ\APACrefatitleChange Point Enhanced Anomaly Detection for IoT Time Series Data Change Point Enhanced Anomaly Detection for IoT Time Series Data.\BBCQ \APACjournalVolNumPagesWater13121633, {APACrefDOI} https://doi.org/10.3390/w13121633 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20214. \BBOQ\APACrefatitleusfAD: a robust anomaly detector based on unsupervised stochastic forest usfAD: a robust anomaly detector based on unsupervised stochastic forest.\BBCQ \APACjournalVolNumPagesInternational Journal of Machine Learning and Cybernetics1241137–1150, {APACrefDOI} https://doi.org/10.1007/s13042-020-01225-0 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleRevisiting Attribute Independence Assumption in Probabilistic Unsupervised Anomaly Detection Revisiting Attribute Independence Assumption in Probabilistic Unsupervised Anomaly Detection.\BBCQ M. Chau, G.A. Wang\BCBL \BBA H. Chen (\BEDS), (\BVOL 9650, \BPGS 73–86). \APACaddressPublisherChamSpringer International Publishing. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay202012. \BBOQ\APACrefatitleLipid‐suppressed and tissue‐fraction corrected metabolic distributions in human central brain structures using 2D 1H magnetic resonance spectroscopic imaging at 7 T Lipid‐suppressed and tissue‐fraction corrected metabolic distributions in human central brain structures using 2D 1H magnetic resonance spectroscopic imaging at 7 T.\BBCQ \APACjournalVolNumPagesBrain and Behavior1012, {APACrefDOI} https://doi.org/10.1002/brb3.1852 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20215. \BBOQ\APACrefatitleAccelerated MR spectroscopic imaging—a review of current and emerging techniques Accelerated MR spectroscopic imaging—a review of current and emerging techniques.\BBCQ \APACjournalVolNumPagesNMR in Biomedicine345, {APACrefDOI} https://doi.org/10.1002/nbm.4314 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20005. \BBOQ\APACrefatitleLOF: Identifying Density-Based Local Outliers LOF: Identifying Density-Based Local Outliers.\BBCQ \APACrefbtitleProceedings of the 2000 ACM SIGMOD international conference on Management of data Proceedings of the 2000 acm sigmod international conference on management of data (\BPGS 93–104). \APACaddressPublisherNew York, NY, USAACM. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20157. \BBOQ\APACrefatitleHierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection.\BBCQ \APACjournalVolNumPagesACM Transactions on Knowledge Discovery from Data1011–51, {APACrefDOI} https://doi.org/10.1145/2733381 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleEntity Embedding-Based Anomaly Detection for Heterogeneous Categorical Events Entity Embedding-Based Anomaly Detection for Heterogeneous Categorical Events.\BBCQ \APACrefbtitleProceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI) Proceedings of the twenty-fifth international joint conference on artificial intelligence (ijcai) (\BPGS 1396–1403). \PrintBackRefs\CurrentBib
- \APACinsertmetastarDeGraaf2019InTechniques{APACrefauthors}De Graaf, R.A. \APACrefYear2019. \APACrefbtitleIn vivo NMR spectroscopy: principles and techniques In vivo NMR spectroscopy: principles and techniques (\PrintOrdinal3rd ed \BEd). \APACaddressPublisherHoboken, NJJohn Wiley & Sons, Inc. \PrintBackRefs\CurrentBib
- \APACinsertmetastarDoersch2016TutorialAutoencoders{APACrefauthors}Doersch, C. \APACrefYearMonthDay20166. \BBOQ\APACrefatitleTutorial on Variational Autoencoders Tutorial on Variational Autoencoders.\BBCQ \APACjournalVolNumPagesarXiv, \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20235. \BBOQ\APACrefatitleDeep Learning-Based Anomaly Detection in Video Surveillance: A Survey Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey.\BBCQ \APACjournalVolNumPagesSensors23115024, {APACrefDOI} https://doi.org/10.3390/s23115024 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201912. \BBOQ\APACrefatitleHardware Trojan Detection Using Changepoint-Based Anomaly Detection Techniques Hardware Trojan Detection Using Changepoint-Based Anomaly Detection Techniques.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Very Large Scale Integration (VLSI) Systems27122706–2719, {APACrefDOI} https://doi.org/10.1109/TVLSI.2019.2925807 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleAnomaly Detection, Analysis and Prediction Techniques in IoT Environment: A Systematic Literature Review Anomaly Detection, Analysis and Prediction Techniques in IoT Environment: A Systematic Literature Review.\BBCQ \APACjournalVolNumPagesIEEE Access781664–81681, {APACrefDOI} https://doi.org/10.1109/ACCESS.2019.2921912 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20094. \BBOQ\APACrefatitleResolution-based outlier factor: detecting the top-n most outlying data points in engineering data Resolution-based outlier factor: detecting the top-n most outlying data points in engineering data.\BBCQ \APACjournalVolNumPagesKnowledge and Information Systems19131–51, {APACrefDOI} https://doi.org/10.1007/s10115-008-0145-3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2007. \BBOQ\APACrefatitleAn Efficient Histogram Method for Outlier Detection An Efficient Histogram Method for Outlier Detection.\BBCQ \APACrefbtitleAdvances in Databases: Concepts, Systems and Applications Advances in databases: Concepts, systems and applications (\BPGS 176–187). \APACaddressPublisherBerlin, HeidelbergSpringer Berlin Heidelberg. \PrintBackRefs\CurrentBib
- \APACrefYear2016. \APACrefbtitleDeep Learning Deep Learning. \APACaddressPublisherThe MIT Press. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20045. \BBOQ\APACrefatitleVolumetric proton spectroscopic imaging of mild traumatic brain injury. Volumetric proton spectroscopic imaging of mild traumatic brain injury.\BBCQ \APACjournalVolNumPagesAJNR. American journal of neuroradiology255730–7, \PrintBackRefs\CurrentBib
- \APACinsertmetastarGrubbs1969ProceduresSamples{APACrefauthors}Grubbs, F.E. \APACrefYearMonthDay19692. \BBOQ\APACrefatitleProcedures for Detecting Outlying Observations in Samples Procedures for Detecting Outlying Observations in Samples.\BBCQ \APACjournalVolNumPagesTechnometrics1111–21, {APACrefDOI} https://doi.org/10.1080/00401706.1969.10490657 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201811. \BBOQ\APACrefatitleA convolutional neural network to filter artifacts in spectroscopic MRI A convolutional neural network to filter artifacts in spectroscopic MRI.\BBCQ \APACjournalVolNumPagesMagnetic Resonance in Medicine8051765–1775, {APACrefDOI} https://doi.org/10.1002/mrm.27166 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20166. \BBOQ\APACrefatitleDeep Residual Learning for Image Recognition Deep Residual Learning for Image Recognition.\BBCQ \APACrefbtitle2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016 ieee conference on computer vision and pattern recognition (cvpr) (\BPGS 770–778). \APACaddressPublisherIEEE. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20225. \BBOQ\APACrefatitleFinancial Fraud: A Review of Anomaly Detection Techniques and Recent Advances Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances.\BBCQ \APACjournalVolNumPagesExpert Systems with Applications193116429, {APACrefDOI} https://doi.org/10.1016/j.eswa.2021.116429 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20232. \BBOQ\APACrefatitleA Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence4521353–1371, {APACrefDOI} https://doi.org/10.1109/TPAMI.2022.3157042 {APACrefURL} https://ieeexplore.ieee.org/document/9729603/ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201711. \BBOQ\APACrefatitleCategorical Reparameterization with Gumbel-Softmax Categorical Reparameterization with Gumbel-Softmax.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20214. \BBOQ\APACrefatitleUnsupervised anomaly detection using generative adversarial networks in 1H-MRS of the brain Unsupervised anomaly detection using generative adversarial networks in 1H-MRS of the brain.\BBCQ \APACjournalVolNumPagesJournal of Magnetic Resonance325106936, {APACrefDOI} https://doi.org/10.1016/j.jmr.2021.106936 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20015. \BBOQ\APACrefatitleTwo-phase clustering process for outliers detection Two-phase clustering process for outliers detection.\BBCQ \APACjournalVolNumPagesPattern Recognition Letters226-7691–700, {APACrefDOI} https://doi.org/10.1016/S0167-8655(00)00131-8 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay200810. \BBOQ\APACrefatitleClustering-Based Outlier Detection Method Clustering-Based Outlier Detection Method.\BBCQ \APACrefbtitle2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery 2008 fifth international conference on fuzzy systems and knowledge discovery (\BVOL 2, \BPGS 429–433). \APACaddressPublisherIEEE. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20002. \BBOQ\APACrefatitleDistance-based outliers: algorithms and applications Distance-based outliers: algorithms and applications.\BBCQ \APACjournalVolNumPagesThe VLDB Journal The International Journal on Very Large Data Bases83-4237–253, {APACrefDOI} https://doi.org/10.1007/s007780050006 \PrintBackRefs\CurrentBib
- \APACinsertmetastarKreis2004IssuesArtifacts{APACrefauthors}Kreis, R. \APACrefYearMonthDay200410. \BBOQ\APACrefatitleIssues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts.\BBCQ \APACjournalVolNumPagesNMR in Biomedicine176361–381, {APACrefDOI} https://doi.org/10.1002/nbm.891 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20215. \BBOQ\APACrefatitleTerminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts’ consensus recommendations Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts’ consensus recommendations.\BBCQ \APACjournalVolNumPagesNMR in Biomedicine345, {APACrefDOI} https://doi.org/10.1002/nbm.4347 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2009. \BBOQ\APACrefatitleOutlier Detection in Axis-Parallel Subspaces of High Dimensional Data Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data.\BBCQ (\BPGS 831–838). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20185. \BBOQ\APACrefatitleQuality of clinical brain tumor MR spectra judged by humans and machine learning tools Quality of clinical brain tumor MR spectra judged by humans and machine learning tools.\BBCQ \APACjournalVolNumPagesMagnetic Resonance in Medicine7952500–2510, {APACrefDOI} https://doi.org/10.1002/mrm.26948 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20217. \BBOQ\APACrefatitleAre Cramér‐Rao lower bounds an accurate estimate for standard deviations in in vivo magnetic resonance spectroscopy? Are Cramér‐Rao lower bounds an accurate estimate for standard deviations in in vivo magnetic resonance spectroscopy?\BBCQ \APACjournalVolNumPagesNMR in Biomedicine347, {APACrefDOI} https://doi.org/10.1002/nbm.4521 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1998. \BBOQ\APACrefatitleGradient-based learning applied to document recognition Gradient-based learning applied to document recognition.\BBCQ \APACjournalVolNumPagesProceedings of the IEEE86112278–2324, {APACrefDOI} https://doi.org/10.1109/5.726791 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20205. \BBOQ\APACrefatitleAnomaly Detection for Time Series Using VAE-LSTM Hybrid Model Anomaly Detection for Time Series Using VAE-LSTM Hybrid Model.\BBCQ \APACrefbtitleICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Icassp 2020 - 2020 ieee international conference on acoustics, speech and signal processing (icassp) (\BPGS 4322–4326). \APACaddressPublisherIEEE. {APACrefURL} https://ieeexplore.ieee.org/document/9053558/ \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20209. \BBOQ\APACrefatitleScalable KDE-based top-n local outlier detection over large-scale data streams Scalable KDE-based top-n local outlier detection over large-scale data streams.\BBCQ \APACjournalVolNumPagesKnowledge-Based Systems204106186, {APACrefDOI} https://doi.org/10.1016/j.knosys.2020.106186 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20123. \BBOQ\APACrefatitleIsolation-Based Anomaly Detection Isolation-Based Anomaly Detection.\BBCQ \APACjournalVolNumPagesACM Transactions on Knowledge Discovery from Data611–39, {APACrefDOI} https://doi.org/10.1145/2133360.2133363 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20215. \BBOQ\APACrefatitleAdvanced magnetic resonance spectroscopic neuroimaging: Experts’ consensus recommendations Advanced magnetic resonance spectroscopic neuroimaging: Experts’ consensus recommendations.\BBCQ \APACjournalVolNumPagesNMR in Biomedicine345, {APACrefDOI} https://doi.org/10.1002/nbm.4309 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20066. \BBOQ\APACrefatitleComprehensive processing, display and analysis for in vivo MR spectroscopic imaging Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging.\BBCQ \APACjournalVolNumPagesNMR in Biomedicine194492–503, {APACrefDOI} https://doi.org/10.1002/nbm.1025 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20239. \BBOQ\APACrefatitleDeuterium echo‐planar spectroscopic imaging (EPSI) in the human liver in vivo at 7 T Deuterium echo‐planar spectroscopic imaging (EPSI) in the human liver in vivo at 7 T.\BBCQ \APACjournalVolNumPagesMagnetic Resonance in Medicine903863–874, {APACrefDOI} https://doi.org/10.1002/mrm.29696 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMachine Learning for Anomaly Detection: A Systematic Review Machine Learning for Anomaly Detection: A Systematic Review.\BBCQ \APACjournalVolNumPagesIEEE Access978658–78700, {APACrefDOI} https://doi.org/10.1109/ACCESS.2021.3083060 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20215. \BBOQ\APACrefatitlePreprocessing, analysis and quantification in single‐voxel magnetic resonance spectroscopy: experts’ consensus recommendations Preprocessing, analysis and quantification in single‐voxel magnetic resonance spectroscopy: experts’ consensus recommendations.\BBCQ \APACjournalVolNumPagesNMR in Biomedicine345, {APACrefDOI} https://doi.org/10.1002/nbm.4257 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1994. \BBOQ\APACrefatitleEstimating the mean and variance of the target probability distribution Estimating the mean and variance of the target probability distribution.\BBCQ \APACrefbtitleProceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94) Proceedings of 1994 ieee international conference on neural networks (icnn’94) (\BVOL 1, \BPGS 55–60). \APACaddressPublisherIEEE. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20197. \BBOQ\APACrefatitleSequential Anomaly Detection using Inverse Reinforcement Learning Sequential Anomaly Detection using Inverse Reinforcement Learning.\BBCQ \APACrefbtitleProceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining (\BPGS 1480–1490). \APACaddressPublisherNew York, NY, USAACM. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20187. \BBOQ\APACrefatitleRepresentation Learning with Contrastive Predictive Coding Representation Learning with Contrastive Predictive Coding.\BBCQ \APACjournalVolNumPagesarXiv, \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20143. \BBOQ\APACrefatitleClinical Proton MR Spectroscopy in Central Nervous System Disorders Clinical Proton MR Spectroscopy in Central Nervous System Disorders.\BBCQ \APACjournalVolNumPagesRadiology2703658–679, {APACrefDOI} https://doi.org/10.1148/radiol.13130531 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20223. \BBOQ\APACrefatitleDeep Learning for Anomaly Detection Deep Learning for Anomaly Detection.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5421–38, {APACrefDOI} https://doi.org/10.1145/3439950 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201511. \BBOQ\APACrefatitleLeSiNN: Detecting Anomalies by Identifying Least Similar Nearest Neighbours LeSiNN: Detecting Anomalies by Identifying Least Similar Nearest Neighbours.\BBCQ \APACrefbtitle2015 IEEE International Conference on Data Mining Workshop (ICDMW) 2015 ieee international conference on data mining workshop (icdmw) (\BPGS 623–630). \APACaddressPublisherIEEE. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201612. \BBOQ\APACrefatitleZERO++: Harnessing the Power of Zero Appearances to Detect Anomalies in Large-Scale Data Sets ZERO++: Harnessing the Power of Zero Appearances to Detect Anomalies in Large-Scale Data Sets.\BBCQ \APACjournalVolNumPagesJournal of Artificial Intelligence Research57593–620, {APACrefDOI} https://doi.org/10.1613/jair.5228 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201712. \BBOQ\APACrefatitleImproving labeling efficiency in automatic quality control of MRSI data Improving labeling efficiency in automatic quality control of MRSI data.\BBCQ \APACjournalVolNumPagesMagnetic Resonance in Medicine7862399–2405, {APACrefDOI} https://doi.org/10.1002/mrm.26618 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay200210. \BBOQ\APACrefatitle3-D echo planar 1HMRS imaging in MS: metabolite comparison from supratentorial vs. central brain 3-D echo planar 1HMRS imaging in MS: metabolite comparison from supratentorial vs. central brain.\BBCQ \APACjournalVolNumPagesMagnetic Resonance Imaging208599–606, {APACrefDOI} https://doi.org/10.1016/S0730-725X(02)00533-7 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20136. \BBOQ\APACrefatitleMR spectroscopic imaging: Principles and recent advances MR spectroscopic imaging: Principles and recent advances.\BBCQ \APACjournalVolNumPagesJournal of Magnetic Resonance Imaging3761301–1325, {APACrefDOI} https://doi.org/10.1002/jmri.23945 \PrintBackRefs\CurrentBib
- \APACinsertmetastarProvencher1993EstimationSpectra{APACrefauthors}Provencher, S.W. \APACrefYearMonthDay199312. \BBOQ\APACrefatitleEstimation of metabolite concentrations from localized in vivo proton NMR spectra Estimation of metabolite concentrations from localized in vivo proton NMR spectra.\BBCQ \APACjournalVolNumPagesMagnetic Resonance in Medicine306672–679, {APACrefDOI} https://doi.org/10.1002/mrm.1910300604 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20155. \BBOQ\APACrefatitleReverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Knowledge and Data Engineering2751369–1382, {APACrefDOI} https://doi.org/10.1109/TKDE.2014.2365790 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20186. \BBOQ\APACrefatitleAdversarially Learned One-Class Classifier for Novelty Detection Adversarially Learned One-Class Classifier for Novelty Detection.\BBCQ \APACrefbtitle2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018 ieee/cvf conference on computer vision and pattern recognition (\BPGS 3379–3388). \APACaddressPublisherIEEE. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20236. \BBOQ\APACrefatitleA Comprehensive Survey of Anomaly Detection Algorithms A Comprehensive Survey of Anomaly Detection Algorithms.\BBCQ \APACjournalVolNumPagesAnnals of Data Science103829–850, {APACrefDOI} https://doi.org/10.1007/s40745-021-00362-9 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20195. \BBOQ\APACrefatitlef-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks.\BBCQ \APACjournalVolNumPagesMedical Image Analysis5430–44, {APACrefDOI} https://doi.org/10.1016/j.media.2019.01.010 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20149. \BBOQ\APACrefatitleVery Deep Convolutional Networks for Large-Scale Image Recognition Very Deep Convolutional Networks for Large-Scale Image Recognition.\BBCQ \APACjournalVolNumPagesICLR, \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20232. \BBOQ\APACrefatitleOptimal Training of Mean Variance Estimation Neural Networks Optimal Training of Mean Variance Estimation Neural Networks.\BBCQ \APACjournalVolNumPagesarXiv, \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20166. \BBOQ\APACrefatitleRethinking the Inception Architecture for Computer Vision Rethinking the Inception Architecture for Computer Vision.\BBCQ \APACrefbtitle2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016 ieee conference on computer vision and pattern recognition (cvpr) (\BPGS 2818–2826). \APACaddressPublisherIEEE. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleEnsemble of Feature Chains for Anomaly Detection Ensemble of Feature Chains for Anomaly Detection.\BBCQ \APACrefbtitleLNCS Lncs (\BVOL 7872, \BPGS 295–306). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitleProposed framework for anomalous change detection Proposed framework for anomalous change detection.\BBCQ \APACrefbtitleICML Workshop on Machine Learning Algorithms for Surveillance and Event Detection Icml workshop on machine learning algorithms for surveillance and event detection (\BPGS 7–14). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay202310. \BBOQ\APACrefatitleA review of machine learning applications for the proton MR spectroscopy workflow A review of machine learning applications for the proton MR spectroscopy workflow.\BBCQ \APACjournalVolNumPagesMagnetic Resonance in Medicine9041253–1270, {APACrefDOI} https://doi.org/10.1002/mrm.29793 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleUnsupervised Representation Learning by Predicting Random Distances Unsupervised Representation Learning by Predicting Random Distances.\BBCQ \APACrefbtitleProceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Proceedings of the twenty-ninth international joint conference on artificial intelligence (ijcai-20) (\BPGS 2950–2956). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20197. \BBOQ\APACrefatitleA Deep One-Class Neural Network for Anomalous Event Detection in Complex Scenes A Deep One-Class Neural Network for Anomalous Event Detection in Complex Scenes.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems3171–14, {APACrefDOI} https://doi.org/10.1109/TNNLS.2019.2933554 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20196. \BBOQ\APACrefatitleDeep Spectral Clustering Using Dual Autoencoder Network Deep Spectral Clustering Using Dual Autoencoder Network.\BBCQ \APACrefbtitle2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2019 ieee/cvf conference on computer vision and pattern recognition (cvpr) (\BPGS 4061–4070). \APACaddressPublisherIEEE. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20225. \BBOQ\APACrefatitleA systematic literature review of methods and datasets for anomaly-based network intrusion detection A systematic literature review of methods and datasets for anomaly-based network intrusion detection.\BBCQ \APACjournalVolNumPagesComputers & Security116102675, {APACrefDOI} https://doi.org/10.1016/j.cose.2022.102675 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay201910. \BBOQ\APACrefatitleAnoPCN: Video Anomaly Detection via Deep Predictive Coding Network AnoPCN: Video Anomaly Detection via Deep Predictive Coding Network.\BBCQ \APACrefbtitleProceedings of the 27th ACM International Conference on Multimedia Proceedings of the 27th acm international conference on multimedia (\BPGS 1805–1813). \APACaddressPublisherNew York, NY, USAACM. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20013. \BBOQ\APACrefatitleAn anomaly detection technique based on a chi‐square statistic for detecting intrusions into information systems An anomaly detection technique based on a chi‐square statistic for detecting intrusions into information systems.\BBCQ \APACjournalVolNumPagesQuality and Reliability Engineering International172105–112, {APACrefDOI} https://doi.org/10.1002/qre.392 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay20178. \BBOQ\APACrefatitleFast computation of full density matrix of multispin systems for spatially localized in vivo magnetic resonance spectroscopy Fast computation of full density matrix of multispin systems for spatially localized in vivo magnetic resonance spectroscopy.\BBCQ \APACjournalVolNumPagesMedical Physics4484169–4178, {APACrefDOI} https://doi.org/10.1002/mp.12375 \PrintBackRefs\CurrentBib