Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Framework for Manipulator Skill Reproduction in Dynamic Environments (2405.15711v1)

Published 24 May 2024 in cs.RO

Abstract: Robot skill learning and execution in uncertain and dynamic environments is a challenging task. This paper proposes an adaptive framework that combines Learning from Demonstration (LfD), environment state prediction, and high-level decision making. Proactive adaptation prevents the need for reactive adaptation, which lags behind changes in the environment rather than anticipating them. We propose a novel LfD representation, Elastic-Laplacian Trajectory Editing (ELTE), which continuously adapts the trajectory shape to predictions of future states. Then, a high-level reactive system using an Unscented Kalman Filter (UKF) and Hidden Markov Model (HMM) prevents unsafe execution in the current state of the dynamic environment based on a discrete set of decisions. We first validate our LfD representation in simulation, then experimentally assess the entire framework using a legged mobile manipulator in 36 real-world scenarios. We show the effectiveness of the proposed framework under different dynamic changes in the environment. Our results show that the proposed framework produces robust and stable adaptive behaviors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. Iqbal, Y. Gao, and Y. Gu, “Provably stabilizing controllers for quadrupedal robot locomotion on dynamic rigid platforms,” IEEE/ASME Trans. Mechatron., vol. 25, no. 4, pp. 2035–2044, 2020.
  2. Y. Gao, C. Yuan, and Y. Gu, “Invariant filtering for legged humanoid locomotion on a dynamic rigid surface,” IEEE/ASME Trans. Mechatron., vol. 27, no. 4, pp. 1900–1909, 2022.
  3. A. Iqbal and Y. Gu, “Extended capture point and optimization-based control for quadrupedal robot walking on dynamic rigid surfaces,” IFAC-PapersOnLine, vol. 54, no. 20, pp. 72–77, 2021.
  4. Y. Gao, Y. Gong, V. Paredes, A. Hereid, and Y. Gu, “Time-varying ALIP model and robust foot-placement control for underactuated bipedal robotic walking on a swaying rigid surface,” in Proc. of American Control Conference, 2023, pp. 3282–3287.
  5. P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. v. Wichert, and W. Burgard, “Planning reactive manipulation in dynamic environments,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 136–143.
  6. T. Nierhoff, S. Hirche, and Y. Nakamura, “Spatial adaption of robot trajectories based on laplacian trajectory editing,” Autonomous Robots, vol. 40, no. 1, pp. 159–173, 2016.
  7. B. Hertel, M. Pelland, and S. R. Ahmadzadeh, “Robot learning from demonstration using elastic maps,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022.
  8. E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373).   IEEE, 2000, pp. 153–158.
  9. L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.
  10. B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration,” Robotics and autonomous systems, vol. 57, no. 5, pp. 469–483, 2009.
  11. P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization of motor skills by learning from demonstration,” in 2009 IEEE International Conference on Robotics and Automation.   IEEE, 2009, pp. 763–768.
  12. S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems with gaussian mixture models,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
  13. S. R. Ahmadzadeh, P. Kormushev, R. S. Jamisola, and D. G. Caldwell, “Learning reactive robot behavior for autonomous valve turning,” in 2014 IEEE-RAS International Conference on Humanoid Robots.   IEEE, 2014, pp. 366–373.
  14. D. Kragic, H. I. Christensen et al., “Survey on visual servoing for manipulation,” Computational Vision and Active Perception Laboratory, Fiskartorpsv, vol. 15, p. 2002, 2002.
  15. M. A. Abidi, R. O. Eason, and R. C. Gonzalez, “Autonomous robotic inspection and manipulation using multisensor feedback,” Computer, vol. 24, no. 4, pp. 17–31, 1991.
  16. P. J. From, V. Duindam, J. T. Gravdahl, and S. Sastry, “Modeling and motion planning for mechanisms on a non-inertial base,” in 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 3320–3326.
  17. P. J. From, J. T. Gravdahl, T. Lillehagen, and P. Abbeel, “Motion planning and control of robotic manipulators on seaborne platforms,” Control Engineering Practice, vol. 19, no. 8, pp. 809–819, 2011.
  18. S. Li, R. Wang, P. Zheng, and L. Wang, “Towards proactive human–robot collaboration: A foreseeable cognitive manufacturing paradigm,” Journal of Manufacturing Systems, vol. 60, pp. 547–552, 2021.
  19. J. Woolfrey, W. Lu, and D. Liu, “Predictive end-effector control of manipulators on moving platforms under disturbance,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2210–2217, 2021.
  20. B. Hertel and S. R. Ahmadzadeh, “Confidence-based skill reproduction through perturbation analysis,” in 20th International Conference on Ubiquitous Robots (UR).   IEEE, 2023.
  21. F. Gustafsson and G. Hendeby, “Some relations between extended and unscented kalman filters,” IEEE Transactions on Signal Processing, vol. 60, no. 2, pp. 545–555, 2011.
  22. K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the 12th annual conference on Computer graphics and interactive techniques, 1985, pp. 245–254.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com