Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GroundGrid:LiDAR Point Cloud Ground Segmentation and Terrain Estimation (2405.15664v1)

Published 24 May 2024 in cs.RO and cs.CV

Abstract: The precise point cloud ground segmentation is a crucial prerequisite of virtually all perception tasks for LiDAR sensors in autonomous vehicles. Especially the clustering and extraction of objects from a point cloud usually relies on an accurate removal of ground points. The correct estimation of the surrounding terrain is important for aspects of the drivability of a surface, path planning, and obstacle prediction. In this article, we propose our system GroundGrid which relies on 2D elevation maps to solve the terrain estimation and point cloud ground segmentation problems. We evaluate the ground segmentation and terrain estimation performance of GroundGrid and compare it to other state-of-the-art methods using the SemanticKITTI dataset and a novel evaluation method relying on airborne LiDAR scanning. The results show that GroundGrid is capable of outperforming other state-of-the-art systems with an average IoU of 94.78% while maintaining a high run-time performance of 171Hz. The source code is available at https://github.com/dcmlr/groundgrid

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Li, Y. and Ibanez-Guzman, J., “Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems”, in IEEE Sig. Process., vol. 37, no. 4, pp. 50-61, 2020.
  2. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., and Gall, J., “SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences”, in Proc. IEEE/CVF Int. Conf. Comp. Vis., pp. 9297–9307, 2019.
  3. Gomes, T. and Matias, D. and Campos, A. and Cunha, L. and Roriz, R., “A Survey on Ground Segmentation Methods for Automotive LiDAR Sensors”, Sensors, no. 2, vol. 23, p. 601, 2023.
  4. S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink, C. Frese, and C. Stiller, “Team AnnieWAY’s autonomous system for the DARPA Urban Challenge 2007”, in Journ. Field Robot. Spec. Issue 2007 DARPA Urban Chall., Part II, vol. 25, pp. 615-639, 2008.
  5. He, D., Abid, F., Kim, Y., Kim, J., “SectorGSnet: Sector Learning for Efficient Ground Segmentation of Outdoor LiDAR Point Clouds”, IEEE Access, vol. 10, pp. 11938-11946, 2022.
  6. Paigwar, A. and Erkent, O. and Sierra-Gonzalez, D. and Laugier, C., “GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation for Autonomous Vehicles”, in Proc. IEEE/RSJ Int. Conf. on Intell. Robots Syst., pp. 2150-2156, 2020.
  7. Bogoslavskyi, I., Stachniss, C., “Fast range image-based segmentation of sparse 3D laser scans for online operation”. in Proc. IEEE/RSJ Int. Conf. on Intell. Robots Syst., pp. 163–169, 2016.
  8. Shen, Z. and Liang, H. and Lin, L. and Wang, Z. and Huang, W. and Yu, J., “Fast Ground Segmentation for 3D LiDAR Point Cloud Based on Jump-Convolution-Process”, Remote Sensing, vol. 13, no. 16, p. 3239, 2021.
  9. T. Wu, H. Fu, B. Liu, H. Xue, R. Ren, and Z. Tu, “Detailed Analysis on Generating the Range Image for LiDAR Point Cloud Processing,” Electronics, vol. 10, no. 11, p. 1224, 2021.
  10. Himmelsbach, M. and Hundelshausen, Felix v. and Wuensche, H.-J., “Fast Segmentation of 3D Point Clouds for Ground Vehicles”, in Proc. IEEE Intell. Veh. Symp., pp. 560-565, 2010.
  11. Cheng, J. and He, D. and Lee, C., “A simple ground segmentation method for LiDAR 3D point clouds”, on Proc. 2nd Int. Conf. Adv. Comp. Tech., Info. Sc. Comm., pp. 171-175, 2020.
  12. Lim, H. and Oh, M. and Myung, H., “Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor”, IEEE Robot. Automat. Lett., vol. 6, 2021.
  13. Douillard, B. and Underwood, J. and Kuntz, N. and Vlaskine, V. and Quadros, A. and Morton, P. and Frenkel, A., “On the segmentation of 3D LIDAR point clouds”, in Proc. IEEE Int. Conf. Robot. Automat., pp. 2798-2805, 2011.
  14. Lee, S. and Lim, H. and Myung, H., “Patchwork++: Fast and Robust Ground Segmentation Solving Partial Under-Segmentation Using 3D Point Cloud”, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 13276-13283, 2022.
  15. Qi, C. R., Su, H., Mo, K., Guibas, L. J., “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, in Proc. IEEE Conf. Comp. Vis. Pattern Recognit., pp. 77-85, 2017.
  16. Welford, B. P., “Note on a Method for Calculating Corrected Sums of Squares and Products”, in Technometrics, vol. 4, no. 3, pp. 419-420, 1962.
  17. Fankhauser, P., Hutter, M., “A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation”, In Robot Operating System (ROS) – The Complete Reference, vol. 1, chap. 5, 2016.
  18. Senatsverwaltung für Stadtentwicklung und Wohnen, Geoportal Berlin / “Airborne Laserscanning (ALS) - Primäre 3D Laserscan-Daten”. online, https://www.stadtentwicklung.berlin.de/geoinformation/, licence: https://www.govdata.de/dl-de/by-2-0.
  19. Morgan-Wall, T., “rayshader: Create Maps and Visualize Data in 2D and 3D”, online, https://www.rayshader.com, 2023.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com