Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Analysis of Distributed Training Strategies for GPT-2 (2405.15628v1)

Published 24 May 2024 in cs.DC

Abstract: The rapid advancement in LLMs has been met with significant challenges in their training processes, primarily due to their considerable computational and memory demands. This research examines parallelization techniques developed to address these challenges, enabling the efficient and scalable training of LLMs. A comprehensive analysis of both data and model parallelism strategies, including Fully Sharded Data Parallelism and Distributed Data-Parallel frameworks, is provided to assess methods that facilitate efficient model training. Furthermore, the architectural complexities and training methodologies of the Generative Pre-Trained Transformer-2 model are explored. The application of these strategies is further investigated, which is crucial in managing the substantial computational and memory demands of training sophisticated models. This analysis not only highlights the effectiveness of these parallel training strategies in enhancing training efficiency but also their role in enabling the scalable training of LLMs. Drawing on recent research findings, through a comprehensive literature review, this research underscores the critical role of parallelization techniques in addressing the computational challenges of training state-of-the-art LLMs, thereby contributing to the advancement of training more sophisticated and capable artificial intelligence systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ishan Patwardhan (4 papers)
  2. Shubham Gandhi (7 papers)
  3. Om Khare (3 papers)
  4. Amit Joshi (5 papers)
  5. Suraj Sawant (5 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com