Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scattering-Based Characteristic Mode Theory for Structures in Arbitrary Background: Computation, Benchmarks, and Applications (2405.15627v3)

Published 24 May 2024 in physics.class-ph and cs.CE

Abstract: This paper presents a novel approach for computing substructure characteristic modes. This method leverages electromagnetic scattering matrices and spherical wave expansion to directly decompose electromagnetic fields. Unlike conventional methods that rely on the impedance matrix generated by the method of moments (MoM), our technique simplifies the problem into a small-scale ordinary eigenvalue problem, improving numerical dynamics and computational efficiency. We have developed analytical substructure characteristic mode solutions for a scenario involving two spheres, which can serve as benchmarks for evaluating other numerical solvers. A key advantage of our method is its independence from specific MoM frameworks, allowing for the use of various numerical methods. This flexibility paves the way for substructure characteristic mode decomposition to become a universal frequency-domain technique.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. M. Vogel, G. Gampala, D. Ludick, U. Jakobus, and C. J. Reddy, “Characteristic mode analysis: Putting physics back into simulation,” IEEE Antennas Propag. Mag., vol. 57, no. 2, pp. 307-317, Apr. 2015.
  2. R. J. Garbacz, “A generalized expansion for radiated and scattered fields,” Ph.D. dissertation, Dept. Elect. Eng., Ohio State Univ., Columbus, OH, USA, 1968.
  3. R. J. Garbacz and R. H. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antennas Propag., vol. 19, no. 3, pp. 348-358, May 1971.
  4. R. Harrington and J. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 622-628, Sep. 1971.
  5. P. Ylä-Oijala and H. Wallén, “PMCHWT-based characteristic mode formulations for material bodies,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2158-2165, Oct. 2019.
  6. Q. I. Dai, Q. S. Liu, H. U. I. Gan, and W. C. Chew, “Combined field integral equation-based theory of characteristic mode,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3973-3981, Jul. 2015.
  7. M. Gustafsson, L. Jelinek, K. Schab, and M. Capek, “Unified Theory of Characteristic Modes—Part I: Fundamentals,” IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 11801-11813, Oct. 10, 2022.
  8. S. Huang, C. F. Wang, and M. C. Tang, “Generalized surface-integral-equation-based sub-structure characteristic-mode solution to composite objects,” IEEE Trans. Antennas Propag., vol. 71, no. 3, pp. 2626-2639, Mar. 2023.
  9. S. Huang, M. C. Tang, and C. F. Wang, “Accurate modal analysis of microstrip patch antennas using sub-structure characteristic modes,” in 2021 Int. Applied Computational Electromagnetics Society (ACES-China) Symp., Shanghai, China, Jul. 2021, pp. 1-2.
  10. S. Xiang and B. K. Lau, “Preliminary study on differences between full- and sub-structure characteristic modes,” in 2019 IEEE Int. Symp. Antennas Propag. USNC-URSI Radio Sci. Meeting, Atlanta, GA, USA, Jul. 2019, pp. 1863-1864.
  11. J. L. T. Ethier and D. A. McNamara, “Sub-structure characteristic mode concept for antenna shape synthesis,” Electron. Lett., vol. 48, no. 9, pp. 1, 2012.
  12. M. Capek and K. Schab, “Computational aspects of characteristic mode decomposition: An overview,” IEEE Antennas Propag. Mag., vol. 64, no. 2, pp. 23-31, Mar. 2022.
  13. S. Huang, C. F. Wang, J. Pan, and D. Yang, “Accurate sub-structure characteristic mode analysis of dielectric resonator antennas with finite ground plan,” IEEE Trans. Antennas Propag., vol. 69, no. 10, pp. 6930-6935, Oct. 2021.
  14. M. Boyuan, S. Huang, J. Pan, Y. T. Liu, D. Yang, and Y. X. Guo, “Higher-order characteristic modes-based broad-beam dielectric resonator antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 4, pp. 818-822, Apr. 2022.
  15. Y. T. Liu, W. Zhao, B. Ma, S. Huang, J. Ren, W. Wu, H. Q. Ma, and Z. J. Hou, “1-D Wideband Phased Dielectric Resonator Antenna Array With Improved Radiation Performance Using Characteristic Mode Analysis,” IEEE Trans. Antennas Propag., vol. 71, no. 7, pp. 6179-6184, July 2023, doi: 10.1109/TAP.2023.3269157.
  16. A. Bhattacharyya and B. Gupta, “On the size reduction of slotted finite ground plane of a circularly polarized microstrip patch antenna using substructure characteristic modes,” in 2019 13th European Conference on Antennas and Propagation (EuCAP), Mar. 31, 2019, pp. 1-5.
  17. E. H. Newman, “An overview of the hybrid MM/Green’s function method in electromagnetics,” Proc. IEEE, vol. 76, no. 3, pp. 270-282, 1988.
  18. P. Parhami, Y. Rahmat-Samii, and R. Mittra, “Technique for calculating the radiation and scattering characteristics of antennas mounted on a finite ground plane,” in Proc. Inst. Electr. Eng., vol. 124, no. 11, IET, 1977, pp. 1009-1016.
  19. Q. I. Dai, H. Gan, C. C. Weng, and C.-F. Wang, “Characteristic mode analysis using Green’s function of arbitrary background,” in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, 2016, pp. 423-424.
  20. Y. Chu, W.C. Chew, J. Zhao, and S. Chen, “A surface integral equation formulation for low-frequency scattering from a composite object,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp.
  21. Characteristic Modes amidst Arbitrary Background using Scattering Matrices. Accessed: Dec. 27, 2023. [Online]. Available: https://github.com/ShiChenbo/Dual-Sphere-BCMs.git
  22. E. Safin and D. Manteuffel, “Advanced eigenvalue tracking of characteristic modes,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2628-2636, Jul. 2016.
  23. Z. Miers and B. K. Lau, “Wideband characteristic mode tracking utilizing far-field patterns,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1658-1661, Mar. 26, 2015.
  24. M. Capek, J. Lundgren, M. Gustafsson, K. Schab, and L. Jelinek, “Characteristic mode decomposition using the scattering dyadic in arbitrary full-wave solvers,” IEEE Trans. Antennas Propag., vol. 71, no. 1, pp. 830-839, 2023.
  25. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transfer, vol. 55, no. 5, pp. 535-575, 1996.
  26. V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf., vol. 106, nos. 1-3, pp. 274-284, Jul. 2007.
  27. V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf., vol. 110, nos. 14-16, pp. 1460-1471, 2009.
  28. M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol., vol. 8, pp. 614-626, Mar. 2017.
  29. G. Demésy, J.-C. Auger, and B. Stout, “Scattering matrix of arbitrarily shaped objects: Combining finite elements and vector partial waves,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 35, no. 8, pp. 1401-1409, 2018.
  30. V. Losenicky, L. Jelinek, M. Capek, and M. Gustafsson, “Method of moments and T-matrix hybrid,” IEEE Trans. Antennas Propag., vol. 70, no. 5, pp. 3560-3574, Dec. 31, 2021.
  31. R. Zhao, J. Hu, H. Zhao, M. Jiang, and Z. Nie, “EFIE-PMCHWT-based domain decomposition method for solving electromagnetic scattering from complex dielectric/metallic composite objects,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1293-1296, Nov. 2016.
  32. J. Bai, S. Cui, Y. Li, S. Yang, and D. Su, “An Iterative Nonconformal Domain Decomposition Surface Integral Equation Method for Scattering Analysis of PEC Objects,” IEEE Antennas Wirel. Propag. Lett., June 2023.
  33. Z. Peng, X.C. Wang, and J.F. Lee, “Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3328-3338, Jul. 2011.
  34. O. Wiedenmann and T.F. Eibert, “A domain decomposition method for boundary integral equations using a transmission condition based on the near-zone couplings,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 4105-4114, May 2014. 2837-2844, Oct. 2003.
  35. A. Gómez-León and G. Platero, “Floquet-Bloch theory and topology in periodically driven lattices,” Phys. Rev. Lett., vol. 110, no. 20, 200403, May 14, 2013.
  36. T. Bilitewski and N. R. Cooper, “Scattering theory for Floquet-Bloch states,” Phys. Rev. A, vol. 91, no. 3, 033601, Mar. 2, 2015.
  37. K. Schab, F. W. Chen, L. Jelinek, M. Capek, J. Lundgren, and M. Gustafsson, “Characteristic Modes of Frequency-Selective Surfaces and Metasurfaces From S-Parameter Data,” IEEE Trans. Antennas Propag., vol. 71, no. 12, pp. 9696-9706, Dec. 2023, doi: 10.1109/TAP.2023.3324991.
  38. H. Alroughani, J. Ethier, and D. A. McNamara, “Orthogonality properties of sub-structure characteristic modes,” Microw. Opt. Technol. Lett., vol. 58, no. 2, pp. 481-486, Feb. 2016.
  39. M. Kuosmanen, P. Ylä-Oijala, J. Holopainen, and V. Viikari, “Orthogonality properties of characteristic modes for lossy structures,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5597-5605, Jan. 28, 2022.
  40. B. Peterson and S. Ström, “T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E (3),” Phys. Rev. D, vol. 8, no. 10, pp. 3661, Nov. 15, 1973.
  41. J. F. Izquierdo and J. Rubio, “Antenna modeling by elementary sources based on spherical waves translation and evolutionary computation,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 923-926, Sep. 5, 2011.
  42. D. J. Ludick, U. Jakobus, and M. Vogel, “A tracking algorithm for the eigenvectors calculated with characteristic mode analysis,” in 8th Eur. Conf. Antennas Propag. (EuCAP 2014), IEEE, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.