Dual opposing quadrature-PT symmetry (2405.15612v1)
Abstract: Our recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system, not only enables observing genuine quantum photonic PT symmetry amid phase-sensitive amplification (PSA) and loss in the presence of Langevin noise but also reveals additional classical-to-quantum (C2Q) transitions in quadrature and relative-intensity noise fluctuations. In contrast to the previous setup, our exploration of an alternative system assuming no loss involves a type-II PSA-only scheme. This scheme facilitates dual opposing quadrature PT symmetry, offering a comprehensive and complementary comprehension of C2Q transitions and anti-Hermiticity-enhanced quantum sensing. Furthermore, our investigation into the correlation with the Einstein-Podolsky-Rosen criteria uncovers previously unexplored connections between PT symmetry and nonclassicality, as well as quantum entanglement within the continuous-variable framework.
- C. M. Bender and S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243-5246 (1998).
- C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947-1018 (2007).
- A. Mostafazadeh. Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 7, 1191-1306 (2010).
- M.-A. Miri and A. Alú. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
- S. Longhi. Parity-time symmety meets photonics: A new twist in non-Hermitian optics. EPL 120, 64001 (2018).
- G. Agarwal and K. Qu. Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems. Phys. Rev. A 85, 031802 (2012).
- S. Scheel and A. Szameit. PT-symmetric photonic quantum systems with gain and loss do not exist. EPL 122 34001 (2018).
- M. D. Reid. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegereate parametric amplification. Phys. Rev. A 40, 913-923 (1989).
- G. Vidal and R. F. Werner. A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
- M. B. Plenio. The logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).
- S. L. Braunstein and P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513-577 (2005).