Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual opposing quadrature-PT symmetry (2405.15612v1)

Published 24 May 2024 in quant-ph

Abstract: Our recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system, not only enables observing genuine quantum photonic PT symmetry amid phase-sensitive amplification (PSA) and loss in the presence of Langevin noise but also reveals additional classical-to-quantum (C2Q) transitions in quadrature and relative-intensity noise fluctuations. In contrast to the previous setup, our exploration of an alternative system assuming no loss involves a type-II PSA-only scheme. This scheme facilitates dual opposing quadrature PT symmetry, offering a comprehensive and complementary comprehension of C2Q transitions and anti-Hermiticity-enhanced quantum sensing. Furthermore, our investigation into the correlation with the Einstein-Podolsky-Rosen criteria uncovers previously unexplored connections between PT symmetry and nonclassicality, as well as quantum entanglement within the continuous-variable framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. C. M. Bender and S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243-5246 (1998).
  2. C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947-1018 (2007).
  3. A. Mostafazadeh. Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 7, 1191-1306 (2010).
  4. M.-A. Miri and A. Alú. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
  5. S. Longhi. Parity-time symmety meets photonics: A new twist in non-Hermitian optics. EPL 120, 64001 (2018).
  6. G. Agarwal and K. Qu. Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems. Phys. Rev. A 85, 031802 (2012).
  7. S. Scheel and A. Szameit. PT-symmetric photonic quantum systems with gain and loss do not exist. EPL 122 34001 (2018).
  8. M. D. Reid. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegereate parametric amplification. Phys. Rev. A 40, 913-923 (1989).
  9. G. Vidal and R. F. Werner. A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
  10. M. B. Plenio. The logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).
  11. S. L. Braunstein and P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513-577 (2005).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com