Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Crafting in Probabilistic Quantum Gate Synthesis (2405.15565v1)

Published 24 May 2024 in quant-ph

Abstract: At the early stage of fault-tolerant quantum computing, it is envisioned that the gate synthesis of a general unitary gate into universal gate sets yields error whose magnitude is comparable with the noise inherent in the gates themselves. While it is known that the use of probabilistic synthesis already suppresses such coherent errors quadratically, there is no clear understanding on its remnant error, which hinders us from designing a holistic error countermeasure that is effectively combined with error suppression and mitigation. In this work, we propose that, by exploiting the fact that synthesis error can be characterized completely and efficiently, we can craft the remnant error of probabilistic synthesis such that the error profile satisfies desirable properties. We prove for the case of single-qubit unitary synthesis that, there is a guaranteed way to perform probabilistic synthesis such that we can craft the remnant error to be described by Pauli and depolarizing errors, while the conventional twirling cannot be applied in principle. Furthermore, we show a numerical evidence for the synthesis of Pauli rotations based on Clifford+T formalism that, we can craft the remnant error so that it can be eliminated up to {\it cubic} order by combining logical measurement and feedback operations. As a result, Pauli rotation gates can be implemented with T counts of $\log_2(1/\varepsilon)$ on average up to accuracy of $\varepsilon=10{-9}$, which can be applied to early fault-tolerant quantum computation beyond classical tractability. Our work opens a novel avenue in quantum circuit design and architecture that orchestrates error countermeasures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
  2. D. Gottesman, Stabilizer codes and quantum error correction, arXiv preprint quant-ph/9705052  (1997).
  3. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM review 41, 303 (1999).
  4. D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).
  5. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
  6. Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X 7, 021050 (2017).
  7. S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8, 031027 (2018).
  8. B. Koczor, Exponential error suppression for near-term quantum devices, Phys. Rev. X 11, 031057 (2021a).
  9. E. van den Berg, Z. K. Minev, and K. Temme, Model-free readout-error mitigation for quantum expectation values, Phys. Rev. A 105, 032620 (2022).
  10. B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).
  11. K. Tsubouchi, T. Sagawa, and N. Yoshioka, Universal Cost Bound of Quantum Error Mitigation Based on Quantum Estimation Theory, Physical Review Letters 131, 210601 (2023), publisher: American Physical Society.
  12. R. Takagi, H. Tajima, and M. Gu, Universal sampling lower bounds for quantum error mitigation, Phys. Rev. Lett. 131, 210602 (2023).
  13. M. B. Hastings, Turning gate synthesis errors into incoherent errors, Quantum Info. Comput. 17, 488–494 (2017).
  14. E. Campbell, Shorter gate sequences for quantum computing by mixing unitaries, Phys. Rev. A 95, 042306 (2017).
  15. J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Physical Review A 94, 052325 (2016).
  16. S. Akibue, G. Kato, and S. Tani, Probabilistic unitary synthesis with optimal accuracy, arXiv preprint arXiv:2301.06307  (2023).
  17. S. Akibue, G. Kato, and S. Tani, Probabilistic state synthesis based on optimal convex approximation, npj Quantum Information 10, 1 (2024), publisher: Nature Publishing Group.
  18. N. J. Ross and P. Selinger, Optimal ancilla-free clifford+t approximation of z-rotations, Quantum Info. Comput. 16, 901–953 (2016).
  19. A. G. Fowler, Constructing arbitrary steane code single logical qubit fault-tolerant gates, Quantum Info. Comput. 11, 867–873 (2011).
  20. A. Bocharov and K. M. Svore, Resource-optimal single-qubit quantum circuits, Phys. Rev. Lett. 109, 190501 (2012).
  21. V. Kliuchnikov, D. Maslov, and M. Mosca, Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and t gates, Quantum Info. Comput. 13, 607–630 (2013).
  22. A. Bocharov, M. Roetteler, and K. M. Svore, Efficient synthesis of universal repeat-until-success quantum circuits, Phys. Rev. Lett. 114, 080502 (2015).
  23. R. Takagi, Optimal resource cost for error mitigation, Phys. Rev. Res. 3, 033178 (2021).
  24. A. M. Dalzell, N. Hunter-Jones, and F. G. Brandão, Random quantum circuits transform local noise into global white noise, Communications in Mathematical Physics 405, 78 (2024).
  25. H. Morisaki, S. Akibue, and K. Fujii, Optimal ancilla-free clifford+t compilation of single qubit unitary, in preparation  (2024).
  26. B. Koczor, The dominant eigenvector of a noisy quantum state, New Journal of Physics 23, 123047 (2021b).
  27. V. Kliuchnikov, D. Maslov, and M. Mosca, Practical approximation of single-qubit unitaries by single-qubit quantum clifford and t circuits, IEEE Transactions on Computers 65, 161 (2015).
  28. E. T. Campbell, Early fault-tolerant simulations of the hubbard model, Quantum Science and Technology 7, 015007 (2021).
  29. B. Regula, Probabilistic transformations of quantum resources, Phys. Rev. Lett. 128, 110505 (2022).
  30. J. Watrous, Semidefinite programs for completely bounded norms, arXiv preprint arXiv:0901.4709  (2009).
  31. J. Watrous, Simpler semidefinite programs for completely bounded norms, arXiv preprint arXiv:1207.5726  (2012).
Citations (3)

Summary

We haven't generated a summary for this paper yet.