Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-diffusive neural network method for hyperbolic conservation laws (2405.15559v1)

Published 23 May 2024 in math.NA and cs.NA

Abstract: In this paper we develop a non-diffusive neural network (NDNN) algorithm for accurately solving weak solutions to hyperbolic conservation laws. The principle is to construct these weak solutions by computing smooth local solutions in subdomains bounded by discontinuity lines (DLs), the latter defined from the Rankine-Hugoniot jump conditions. The proposed approach allows to efficiently consider an arbitrary number of entropic shock waves, shock wave generation, as well as wave interactions. Some numerical experiments are presented to illustrate the strengths and properties of the algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. J.-M. Ghidaglia and F. Pascal. The normal flux method at the boundary for multidimensional finite volume approximations in CFD. Eur. J. Mech. B Fluids, 24(1):1–17, 2005.
  2. E. Godlewski and P.-A. Raviart. Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris, 1991.
  3. D. Serre. Systèmes de lois de conservation. I. Fondations. [Foundations]. Diderot Editeur, Paris, 1996. Hyperbolicité, entropies, ondes de choc. [Hyperbolicity, entropies, shock waves].
  4. P. G. LeFloch. Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2002. The theory of classical and nonclassical shock waves.
  5. J. Smoller. Shock waves and reaction-diffusion equations, volume 258 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York-Berlin, 1983.
  6. E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws, volume 118 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.
  7. B. Després. Lax theorem and finite volume schemes. Math. Comput., 74(247).
  8. M. Laforest and P. G. LeFloch. Diminishing functionals for nonclassical entropy solutions selected by kinetic relations. Port. Math., 67(3), 2010.
  9. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998.
  10. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.
  11. fPINNs: fractional physics-informed neural networks. SIAM J. Sci. Comput., 41(4):A2603–A2626, 2019.
  12. Physics-informed generative adversarial networks for stochastic differential equations. SIAM J. Sci. Comput., 42(1):A292–A317, 2020.
  13. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA, 115(34):8505–8510, 2018.
  14. Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems. Comput. Methods Appl. Mech. Engrg., 390:Paper No. 114502, 18, 2022.
  15. J. Sirignano and K. Spiliopoulos. DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys., 375:1339–1364, 2018.
  16. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineering, 365, 2020.
  17. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley–Leverett problem. Sci Rep., 12:7557, 2022.
  18. Thermodynamically consistent physics-informed neural networks for hyperbolic systems. J. of Comput. Phys., 449:110754, 2022.
  19. E. Lorin and X. Yang. Schwarz waveform relaxation-learning for advection-diffusion-reaction equations. J. Comput. Phys., 473:Paper No. 111657, 2023.
  20. E. Lorin and X. Yang. Neural network-based quasi-optimal domain decomposition method for computing the Schrödinger equation. Comput. Phys. Commun., Accepted. 2024.
  21. M. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. on Numer. Anal., 45(2):666–697, 2007.
  22. Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains. BIT Numerical Mathematics, 61(1):173–207, 2021.
  23. M.J. Gander and C. Rohde. Overlapping Schwarz waveform relaxation for convection-dominated nonlinear conservation laws. SIAM Journal on Scientific Computing, 27(2):415–439, 2006.
  24. X. Antoine and E. Lorin. An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations. Numerische Mathematik, 137(4):923–958, 2017.
  25. Optimization methods for large-scale machine learning. SIAM Rev., 60(2):223–311, 2018.
  26. JAX: composable transformations of Python+NumPy programs, 2018.
  27. Comparative study of high-resolution shock-capturing schemes for a real gas. in: Proc. seventh gamm conf. on numerical methods in fluid mechanics, (Lauvain-la-Neuve, Belgium: sep. 9-11, 1987), m. Devill, 20 (ISBN 3-528-08094-9), 1987.
  28. P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43(2):357–372, 1981.
  29. L. Halpern and J. Szeftel. Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation. Mathematical Models and Methods in Applied Sciences, 20(12):2167–2199, 2010.
  30. Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves. ESAIM: Numerical Analysis and Mathematical Modeling (M2AN), 52(4):1569–1596, 2018.
  31. X. Antoine and E. Lorin. On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation. J. Comput. Appl. Math., 354:15–30, 2019.
  32. Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential. J. Comput. Phys., 228(2):312–335, 2009.
  33. A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems. Comput. Methods Appl. Mech. Engrg., 368:113162, 23, 2020.
  34. A well-conditioned weak coupling of boundary element and high-order finite element methods for time-harmonic electromagnetic scattering by inhomogeneous objects. SIAM J. Sci. Comput., 44(3):B640–B667, 2022.
  35. X. Antoine and C. Besse. Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation. J. Comput. Phys., 188(1):157–175, 2003.
  36. R. Gorenflo. Fractional calculus: Some numerical methods. In CISM Courses and Lectures, volume 378. Springer, 1997.
  37. A friendly review to absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum wave equations. Molecular Physics, to appear, 115, 2017.
  38. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 5(2):289–307, 2006.
  39. X. Antoine and H. Barucq. Microlocal diagonalization of strictly hyperbolic pseudodifferential systems and application to the design of radiation conditions in electromagnetism. SIAM J. Appl. Math., 61(6):1877–1905 (electronic), 2001.
  40. Machine learning and the physical sciences. Rev. Mod. Phys., 91:045002, Dec 2019.
  41. G. Carleo and M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355(6325):602–606, 2017.
  42. Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part I: Construction and a priori estimates. Math. Models Methods Appl. Sci., 22(10):1250026, 38, 2012.
  43. X. Antoine and C. Besse. Construction, structure and asymptotic approximations of a microdifferential transparent boundary condition for the linear Schrödinger equation. J. Math. Pures Appl. (9), 80(7):701–738, 2001.
  44. L. Nirenberg. Lectures on linear partial differential equations. American Mathematical Society, Providence, R.I., 1973.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com