Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UAV-assisted C-RAN for On-demand Cellular Coverage: Opportunities and Challenges (2405.15548v1)

Published 24 May 2024 in cs.NI and cs.ET

Abstract: The deployment of beyond fifth-generation (5G) infrastructure over disaster-affected regions, temporary hotspot situations (e.g., massive gatherings, etc.), complex terrains (e.g., sea, hills, marshes, etc.) poses numerous challenges for cellular service providers. Recently, unmanned aerial vehicles (UAVs) have emerged as potential candidates to overcome the aforementioned technical issues based on their multi-role capabilities to serve as aerial base stations, mobile relays, and flying wireless access points. As such, the UAVs can act as portable platforms that can be deployed immediately on demand without requiring massive ground infrastructure to support wireless services. This article introduces the integration of UAVs to cloud radio access networks (C-RAN) for beyond 5G applications. The article mainly focuses on the underlying opportunities and challenges to realize the UAV-assisted C-RAN (UC-RAN) architecture in view of three generic application scenarios, i.e., disaster management, hotspots, and complex terrains. A preliminary performance analysis via simulation is further provided for the proposed UC-RAN under hotspot application scenario based on the relevant metrics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Communications surveys & tutorials, vol. 17, no. 1, pp. 405–426, 2014.
  2. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE network, vol. 34, no. 3, pp. 134–142, 2019.
  3. S. Matoussi, I. Fajjari, S. Costanzo, N. Aitsaadi, and R. Langar, “5G RAN: Functional split orchestration optimization,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 7, pp. 1448–1463, 2020.
  4. K. G. Panda, S. Das, D. Sen, and W. Arif, “Design and deployment of UAV-aided post-disaster emergency network,” IEEE Access, vol. 7, pp. 102 985–102 999, 2019.
  5. F. Castellano. (2017) Commercial drones are revolutionizing business operations. [Online]. Available: https://www.toptal.com/finance/market-research-analysts/drone
  6. Fortune Business Insight. (2017) Unmanned aerial vehicle market analysis. [Online]. Available: https://www.fortunebusinessinsights.com/industry-reports/unmanned-aerial-vehicle-uav-market-101603
  7. M. Jiang, J. Cezanne, A. Sampath, O. Shental, Q. Wu, O. Koymen, A. Bedewy, and J. Li, “Wireless fronthaul for 5G and future radio access networks: Challenges and enabling technologies,” IEEE Wireless Communications, vol. 29, no. 2, pp. 108–114, 2022.
  8. M. Kishk, A. Bader, and M.-S. Alouini, “Aerial base station deployment in 6G cellular networks using tethered drones: The mobility and endurance tradeoff,” IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 103–111, 2020.
  9. Y. Li and L. Cai, “UAV-assisted dynamic coverage in a heterogeneous cellular system,” IEEE Network, vol. 31, no. 4, pp. 56–61, 2017.
  10. X. Li, C. Pan, C. Zhang, C. He, and K. Wang, “Data rate maximization in UAV-assisted C-RAN,” IEEE Wireless Communications Letters, vol. 9, no. 12, pp. 2163–2167, 2020.
  11. A. A. Ahmad, J. Kakar, R.-J. Reifert, and A. Sezgin, “UAV-assisted C-RAN with rate splitting under base station breakdown scenarios,” in 2019 IEEE International Conference on Communications Workshops (ICC Workshops).   IEEE, 2019, pp. 1–6.
  12. M. Horani and M. O. Hasna, “Latency analysis of UAV based communication networks,” in 2018 International Conference on Information and Communication Technology Convergence (ICTC).   IEEE, 2018, pp. 385–390.
  13. F. Zhou, R. Q. Hu, Z. Li, and Y. Wang, “Mobile edge computing in unmanned aerial vehicle networks,” IEEE Wireless Communications, vol. 27, no. 1, pp. 140–146, 2020.
  14. L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-UAV-enabled load-balance mobile-edge computing for IoT networks,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6898–6908, 2020.
  15. Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient resource allocation in UAV-enabled mobile edge computing networks,” IEEE Transactions on Wireless Communications, vol. 18, no. 9, pp. 4576–4589, 2019.
  16. Q. Zhang, J. Chen, L. Ji, Z. Feng, Z. Han, and Z. Chen, “Response delay optimization in mobile edge computing enabled UAV swarm,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3280–3295, 2020.
  17. A. Allouch, A. Koubâa, M. Khalgui, and T. Abbes, “Qualitative and quantitative risk analysis and safety assessment of unmanned aerial vehicles missions over the internet,” IEEE Access, vol. 7, pp. 53 392–53 410, 2019.
  18. S. Sekander, H. Tabassum, and E. Hossain, “Multi-tier drone architecture for 5G and B5G cellular networks: Challenges, trends, and prospects,” IEEE Communications Magazine, vol. 56, no. 3, pp. 96–103, 2018.
  19. N. Mohsen and K. S. Hassan, “C-RAN simulator: A tool for evaluating 5G cloud-based networks system-level performance,” in 2015 IEEE 11th International conference on wireless and mobile computing, networking and communications (WiMob).   IEEE, 2015, pp. 302–309.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com