Dipolar Droplets at 3D-1D Crossover (2405.15433v4)
Abstract: We investigate beyond-mean-field corrections to the energy of an elongated homogeneous Bose gas strongly confined in two directions, with dipoles aligned along the long axis of the system. When the dipolar interaction reaches its critical strength, the mean-field approach predicts instability. However, similar to the free-space case, beyond-mean-field effects significantly alter the ground state of the system, leading to the formation of a self-bound atomic cloud known as a quantum droplet. Our analysis demonstrates that the beyond-mean-field contribution to the energy in the quasi-1D region, in addition to the confinement induced shift of the mean field energy, is proportional to the third power of the density $\sim n3$. Therefore, it can be interpreted as an effective three-body repulsion that stabilizes the gas, preventing collapse and leading to a finite-density solution. We also show that the same effect plays a crucial role in the binding of strongly elongated dipolar droplets under harmonic confinement.
- Góral K, Rzazewski K and Pfau T 2000 Phys. Rev. A 61(5) 051601 URL https://link.aps.org/doi/10.1103/PhysRevA.61.051601
- Bohn J L, Rey A M and Ye J 2017 Science 357 1002–1010
- Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313
- Petrov D S 2015 Phys. Rev. Lett. 115 155302
- Lee T D, Huang K and Yang C N 1957 Physical Review 106 1135
- Beliaev S 1958 Sov. Phys. JETP 34 299
- Hugenholtz N and Pines D 1959 Physical Review 116 489
- Lima A R P and Pelster A 2012 Phys. Rev. A 86(6) 063609 URL https://link.aps.org/doi/10.1103/PhysRevA.86.063609
- Popov V N 1972 Theoretical and Mathematical Physics 11 565–573
- Mora C and Castin Y 2009 Phys. Rev. Lett. 102 180404
- Santos L, Shlyapnikov G V and Lewenstein M 2003 Phys. Rev. Lett. 90 250403
- Fischer U R 2006 Phys. Rev. A 73 031602(R)
- Boudjemâa A and Shlyapnikov G V 2013 Phys. Rev. A 87 025601
- Kora Y and Boninsegni M 2019 J. Low. Temp. Phys. 197 337
- Wächtler F and Santos L 2016 Phys. Rev. A 93 061603(R)
- Jachymski K and Ołdziejewski R 2018 Phys. Rev. A 98(4) 043601 URL https://link.aps.org/doi/10.1103/PhysRevA.98.043601
- Cinti F and Boninsegni M 2017 Phys. Rev. A 96 013627
- Yi S and You L 2000 Phys. Rev. A 61(4) 041604(R) URL https://link.aps.org/doi/10.1103/PhysRevA.61.041604
- Ołdziejewski R and Jachymski K 2016 Phys. Rev. A 94(6) 063638 URL https://link.aps.org/doi/10.1103/PhysRevA.94.063638
- Ota M and Astrakharchik G E 2020 SciPost Phys. 9(2) 20 URL https://scipost.org/10.21468/SciPostPhys.9.2.020
- Hu H and Liu X J 2020 Phys. Rev. Lett. 125(19) 195302 URL https://link.aps.org/doi/10.1103/PhysRevLett.125.195302
- Petrov D S and Astrakharchik G E 2016 Phys. Rev. Lett. 117 100401
- Bisset R N and Blakie P B 2015 Phys. Rev. A 92(6) 061603 URL https://link.aps.org/doi/10.1103/PhysRevA.92.061603
- Blakie P B 2016 Phys. Rev. A 93(3) 033644 URL https://link.aps.org/doi/10.1103/PhysRevA.93.033644