Complexity of Robust Orbit Problems for Torus Actions and the abc-conjecture (2405.15368v1)
Abstract: When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, B\"urgisser et al. gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in $\mathbb{C}n$ up to a factor $\gamma>1$. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for $\gamma = n{\Omega(1/\log\log n)}$ by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor $\gamma = \exp(\mathrm{poly}(n))$. Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic $abc$-conjecture holds -- establishing a new and surprising connection between computational complexity and number theory.
- PRIMES is in P. Annals of Mathematics, 160(2):781–793, 2004.
- Lattice problems in NP∩coNPNPcoNP\textsc{NP}\cap\textsc{coNP}NP ∩ coNP. J. ACM, 52(5):749–765, sep 2005. doi:10.1145/1089023.1089025.
- Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing. In STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 172–181. ACM, New York, 2018. doi:10.1145/3188745.3188942.
- Invariant theory and scaling algorithms for maximum likelihood estimation. SIAM J. Appl. Algebra Geom., 5(2):304–337, 2021. doi:10.1137/20M1328932.
- Toric invariant theory for maximum likelihood estimation in log-linear models. Algebraic Statistics, 12(2):187–211, 2021.
- Michele Audin. Torus actions on symplectic manifolds, volume 93 of Progress in Mathematics. Birkhäuser Basel, 2012.
- Alan Baker. Experiments on the abc-conjecture. Publicationes Mathematicae, 65, 11 2004.
- Alan Baker. Logarithmic forms and the abc-conjecture. In Number Theory: Diophantine, Computational and Algebraic Aspects. Proceedings of the International Conference held in Eger, Hungary, July 29-August 2, 1996, pages 37–44. De Gruyter, 2011. URL: https://doi.org/10.1515/9783110809794.37, doi:doi:10.1515/9783110809794.37.
- Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs. Cambridge University Press, 2008. doi:10.1017/CBO9780511542862.
- Variety membership testing, algebraic natural proofs, and geometric complexity theory. arXiv:1911.02534, 2020.
- Heights in Diophantine Geometry. New Mathematical Monographs. Cambridge University Press, 2006. doi:10.1017/CBO9780511542879.
- Pi and the AGM : a study in analytic number theory and computational complexity. Canadian Mathematical Society series of monographs and advanced texts. Wiley, New York, 1987.
- On the complexity of familiar functions and numbers. SIAM Rev., 30(4):589–601, 1988. doi:10.1137/1030134.
- A tutorial on geometric programming. Optimization and Engineering, 8(1):67–127, March 2007. doi:10.1007/s11081-007-9001-7.
- Membership in moment polytopes is in NP and coNP. SIAM J. Comput., 46(3):972–991, 2017. doi:10.1137/15M1048859.
- Polynomial Time Algorithms in Invariant Theory for Torus Actions. In Valentine Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1–32:30, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14306, doi:10.4230/LIPIcs.CCC.2021.32.
- Towards a theory of non-commutative optimization: geodesic first and second order methods for moment maps and polytopes. In 60th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2019, pages 845–861. IEEE Computer Soc., Los Alamitos, CA, 2019. URL: http://arxiv.org/abs/1910.12375.
- Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In 59th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2018, pages 883–897. IEEE Computer Soc., Los Alamitos, CA, 2018. doi:10.1109/FOCS.2018.00088.
- Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory. In 9th Innovations in Theoretical Computer Science, volume 94 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 24, 20. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.
- Interior-point methods for unconstrained geometric programming and scaling problems. arXiv:2008.12110, 2020.
- Log-sum-exp neural networks and posynomial models for convex and log-log-convex data. IEEE Transactions on Neural Networks and Learning Systems, 31(3):827–838, 2020. doi:10.1109/TNNLS.2019.2910417.
- A universal approximation result for difference of log-sum-exp neural networks. IEEE Transactions on Neural Networks and Learning Systems, 31(12):5603–5612, 2020. doi:10.1109/TNNLS.2020.2975051.
- John H. Conway and Neil J. A. Sloane. Low-dimensional lattices v. integral coordinates for integral lattices. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 426(1871):211–232, 1989. URL: http://www.jstor.org/stable/2398341.
- Computational Invariant Theory. BV035421342 Encyclopaedia of Mathematical Sciences volume 130. Springer, Heidelberg ; New York ; Dordrecht ; London, second enlarged edition with two appendices by vladimir l. popov, and an addendum by norbert a. campo and vladimir l. popov edition, 2015.
- Polynomial degree bounds for matrix semi-invariants. Adv. Math., 310:44–63, 2017. doi:10.1016/j.aim.2017.01.018.
- Algorithms for orbit closure separation for invariants and semi-invariants of matrices. Algebra Number Theory, 14(10):2791–2813, 2020. doi:10.2140/ant.2020.14.2791.
- Maximum likelihood estimation for matrix normal models via quiver representations. SIAM Journal on Applied Algebra and Geometry, 5(2):338–365, 2021.
- Maximum likelihood estimation for tensor normal models via castling transforms. In Forum of Mathematics, Sigma, volume 10, page e50. Cambridge University Press, 2022.
- Approximating CVP to within-almost polynomial factors is NP-hard. Combinatorica, 23(2):205–243, April 2003. doi:10.1007/s00493-003-0019-y.
- A note on the complexity of comparing succinctly represented integers, with an application to maximum probability parsing. ACM Trans. Comput. Theory, 6(2), may 2014. doi:10.1145/2601327.
- Explicit Noether normalization for simultaneous conjugation via polynomial identity testing. In Approximation, randomization, and combinatorial optimization, volume 8096 of Lecture Notes in Comput. Sci., pages 527–542. Springer, Heidelberg, 2013. doi:10.1007/978-3-642-40328-6_37.
- Near optimal sample complexity for matrix and tensor normal models via geodesic convexity. arXiv preprint arXiv:2110.07583, 2021.
- A deterministic polynomial time algorithm for non-commutative rational identity testing. In 57th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2016, pages 109–117. IEEE Computer Soc., Los Alamitos, CA, 2016. doi:10.1109/FOCS.2016.95.
- Operator scaling: theory and applications. Found. Comput. Math., 20(2):223–290, 2020. doi:10.1007/s10208-019-09417-z.
- Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–178, New York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1536414.1536440.
- Dorian Goldfeld. Beyond the last theorem. Math Horizons, 4(1):26–34, 1996. arXiv:https://doi.org/10.1080/10724117.1996.11974985, doi:10.1080/10724117.1996.11974985.
- Public-key cryptosystems from lattice reduction problems. In Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 112–131, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.
- It’s as easy as abc. Notices of the American Mathematical Society, 49, 01 2002.
- Symplectic techniques in physics. Cambridge Univ. Press, Cambridge u.a., 1. publ., reprint. edition, 1986.
- Leonid Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sci., 69(3):448–484, 2004. doi:10.1016/j.jcss.2004.06.003.
- Marshall Hall. Integral matrices a𝑎aitalic_a for which aat=mi𝑎superscript𝑎𝑡𝑚𝑖aa^{t}=miitalic_a italic_a start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT = italic_m italic_i. Number Theory and Algebra, pages 119 – 134, 1977. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887022329&partnerID=40&md5=5f91330ec7e4ddf22586cd2717a71b3a.
- Marshall Hall. Combinatorial completions. In Advances in Graph Theory, volume 3 of Annals of Discrete Mathematics, pages 111–123. Elsevier, 1978. URL: https://www.sciencedirect.com/science/article/pii/S0167506008705016, doi:https://doi.org/10.1016/S0167-5060(08)70501-6.
- Computing the nc-rank via discrete convex optimization on cat(0) spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):455–478, 2021. arXiv:https://doi.org/10.1137/20M138836X, doi:10.1137/20M138836X.
- An introduction to the theory of numbers. Oxford University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles.
- Charles J. Himmelberg. Pseudo-metrizability of quotient spaces. Fund. Math., pages 1–6, 1968.
- Data fitting with geometric-programming-compatible softmax functions. Optimization and Engineering, 17(4):897–918, December 2016. doi:10.1007/s11081-016-9332-3.
- Ntru: A ring-based public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
- Optimizations for ntru. In Kazimierz Alster, Jerzy Urbanowicz, and Hugh C. Williams, editors, Proceedings of the International Conference organized by the Stefan Banach International Mathematical Center Warsaw, Poland, September 11-15, 2000, pages 77–88, Berlin, New York, 2001. De Gruyter. URL: https://doi.org/10.1515/9783110881035.77 [cited 2023-06-20], doi:doi:10.1515/9783110881035.77.
- On the orbit closure intersection problems for matrix tuples under conjugation and left-right actions, pages 4115–4126. Society for Industrial and Applied Mathematics, 2023. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch158, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch158, doi:10.1137/1.9781611977554.ch158.
- Non-commutative Edmonds’ problem and matrix semi-invariants. Comput. Complexity, 26(3):717–763, 2017. doi:10.1007/s00037-016-0143-x.
- Constructive non-commutative rank computation is in deterministic polynomial time. Comput. Complexity, 27(4):561–593, 2018. doi:10.1007/s00037-018-0165-7.
- Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/s00037-004-0182-6.
- Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research, 12(3):415–440, 1987. URL: http://www.jstor.org/stable/3689974.
- Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979. doi:10.1137/0208040.
- The length of vectors in representation spaces. In Knud Lønsted, editor, Algebraic Geometry, pages 233–243, Berlin, Heidelberg, 1979. Springer Berlin Heidelberg.
- Pascal Koiran. Hilbert’s Nullstellensatz is in the Polynomial Hierarchy. Journal of Complexity, 12(4):273–286, 1996. doi:https://doi.org/10.1006/jcom.1996.0019.
- Joseph P. S. Kung and Gian-Carlo Rota. The invariant theory of binary forms. Bull. Amer. Math. Soc. (N.S.), 10(1):27–85, 1984. doi:10.1090/S0273-0979-1984-15188-7.
- Greg Kuperberg. Knottedness is in NP, modulo GRH. Advances in Mathematics, 256:493–506, 2014. URL: https://www.sciencedirect.com/science/article/pii/S0001870814000188, doi:https://doi.org/10.1016/j.aim.2014.01.007.
- Serge Lang. Elliptic Curves: Diophantine Analysis, volume 231 of Grundlehren der mathematischen Wissenschaften. Springer, 2013.
- On the computability of continuous maximum entropy distributions with applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 930–943, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384302.
- Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515–534, December 1982. doi:10.1007/BF01457454.
- Seymour Lipschutz. Schaum’s outline of theory and problems of linear algebra : [including 600 solved problems ; completely solved in detail]. Schaum’s outline series. McGraw-Hill, New York u.a., 6th ed. edition, 1974.
- Singular tuples of matrices is not a null cone (and the symmetries of algebraic varieties). J. Reine Angew. Math., 780:79–131, 2021. doi:10.1515/crelle-2021-0044.
- Tropical geometry and machine learning. Proceedings of the IEEE, 109(5):728–755, 2021. doi:10.1109/JPROC.2021.3065238.
- Reduction of symplectic manifolds with symmetry. Reports on Mathematical Physics, 5(1):121–130, 1974. URL: https://www.sciencedirect.com/science/article/pii/0034487774900214, doi:https://doi.org/10.1016/0034-4877(74)90021-4.
- E. M. Matveev. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. Izvestiya: Mathematics, 62(4):723, aug 1998. URL: https://dx.doi.org/10.1070/IM1998v062n04ABEH000190, doi:10.1070/IM1998v062n04ABEH000190.
- Complexity of lattice problems : a cryptographic perspective. The Kluwer international series in engineering and computer science BV000632170 671. Kluwer Academic, Boston, 2002.
- Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences, 13(3):300–317, 1976. URL: https://www.sciencedirect.com/science/article/pii/S0022000076800438, doi:https://doi.org/10.1016/S0022-0000(76)80043-8.
- Louis J. Mordell. On the representation of a binary quadratic form as a sum of squares of linear forms. Mathematische Zeitschrift, 35(1-15):1432–1823, 1932. URL: https://doi.org/10.1007/BF01186544.
- Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normalization. J. Amer. Math. Soc., 30(1):225–309, 2017. doi:10.1090/jams/864.
- Geometric complexity theory I: An approach to the P vs. NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.
- David Mumford. The red book of varieties and schemes, volume 1358 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. doi:10.1007/b62130.
- Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994. doi:10.1007/978-3-642-57916-5.
- On complexity of matrix scaling. Linear Algebra and its Applications, 302-303:435–460, 1999. URL: https://www.sciencedirect.com/science/article/pii/S0024379599002128, doi:https://doi.org/10.1016/S0024-3795(99)00212-8.
- Joseph Oesterlé. Nouvelles approches du théorème de Fermat. In Séminaire Bourbaki : volume 1987/88, exposés 686-699, number 161-162 in Astérisque. Société mathématique de France, 1988. talk:694. URL: http://www.numdam.org/item/SB_1987-1988__30__165_0/.
- The complexity of the matrix eigenproblem. In Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), pages 507–516. ACM, New York, 1999. doi:10.1145/301250.301389.
- Randomized algorithms in number theory. Communications on Pure and Applied Mathematics, 39(S1):S239–S256, 1986. doi:https://doi.org/10.1002/cpa.3160390713.
- Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization. Wiley, Chichester u.a., reprinted edition, 1999.
- Entropy, optimization and counting. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 50–59, New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.2591803.
- Cameron L. Stewart and R. Tijdeman. On the Oesterlé-Masser conjecture. Monatshefte für Mathematik, 102(3):251–257, September 1986. doi:10.1007/BF01294603.
- On the abc conjecture. Mathematische Annalen, 291(2):225–230, 1991. URL: http://eudml.org/doc/164860.
- Maximum entropy distributions: Bit complexity and stability. In Alina Beygelzimer and Daniel Hsu 0001, editors, Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning Research, pages 2861–2891. PMLR, 2019. URL: http://proceedings.mlr.press/v99/straszak19a.html.
- Bernd Sturmfels. Algorithms in Invariant Theory. Texts & Monographs in Symbolic Computation. Springer, 2008. doi:10.1007/978-3-211-77417-5.
- Alfred J. van der Poorten. On Baker’s inequality for linear forms in logarithms. Mathematical Proceedings of the Cambdridge Philosophical Society, 80(2):233–248, 1976. doi:10.1017/S0305004100052877.
- Michel Waldschmidt. Diophantine approximation on linear algebraic groups : transcendence properties of the exponential function in several variables. Grundlehren der mathematischen Wissenschaften BV000000395 326. Springer, Berlin u.a., 2000.
- Michel Waldschmidt. Open diophantine problems. Mosc. Math. J., 4:245–305, 2004.
- Michel Waldschmidt. Lecture on the abc conjecture and some of its consequences. In Pierre Cartier, A.D.R. Choudary, and Michel Waldschmidt, editors, Mathematics in the 21st Century, pages 211–230, Basel, 2015. Springer Basel.
- Logarithmic forms and group varieties. Journal für die reine und angewandte Mathematik, 442:19–62, 1993. URL: http://eudml.org/doc/153550.