Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Everything is Editable: Extend Knowledge Editing to Unstructured Data in Large Language Models (2405.15349v2)

Published 24 May 2024 in cs.CL

Abstract: Recent knowledge editing methods have primarily focused on modifying structured knowledge in LLMs. However, this task setting overlooks the fact that a significant portion of real-world knowledge is stored in an unstructured format, characterized by long-form content, noise, and a complex yet comprehensive nature. Techniques like local layer key-value storage and term-driven optimization, as used in previous methods like MEMIT, are not effective for handling unstructured knowledge. To address these challenges, we propose a novel Unstructured Knowledge Editing method, namely UnKE, which extends previous assumptions in the layer dimension and token dimension. Firstly, in the layer dimension, we propose non-local block key-value storage to replace local layer key-value storage, increasing the representation ability of key-value pairs and incorporating attention layer knowledge. Secondly, in the token dimension, we replace term-driven optimization with cause-driven optimization, which edits the last token directly while preserving context, avoiding the need to locate terms and preventing the loss of context information. Results on newly proposed unstructured knowledge editing dataset (UnKEBench) and traditional structured datasets demonstrate that UnKE achieves remarkable performance, surpassing strong baselines. In addition, UnKE has robust batch editing and sequential editing capabilities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Ai-generated images introduce invisible relevance bias to text-image retrieval. CoRR, abs/2311.14084, 2023. doi: 10.48550/ARXIV.2311.14084. URL https://doi.org/10.48550/arXiv.2311.14084.
  2. Editing large language models: Problems, methods, and opportunities. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 10222–10240. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.632. URL https://doi.org/10.18653/v1/2023.emnlp-main.632.
  3. A comprehensive study of knowledge editing for large language models. arXiv preprint arXiv:2401.01286, 2024a.
  4. Can we edit multimodal large language models? arXiv preprint arXiv:2310.08475, 2023.
  5. Editing personality for llms. arXiv preprint arXiv:2310.02168, 2023.
  6. Mass-editing memory in a transformer. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=MkbcAHIYgyS.
  7. Mlake: Multilingual knowledge editing benchmark for large language models, 2024a.
  8. Gabriele Bavota. Mining unstructured data in software repositories: Current and future trends. In Leaders of Tomorrow Symposium: Future of Software Engineering, FOSE@SANER 2016, Osaka, Japan, March 14, 2016, pages 1–12. IEEE Computer Society, 2016. doi: 10.1109/SANER.2016.47. URL https://doi.org/10.1109/SANER.2016.47.
  9. Mquake: Assessing knowledge editing in language models via multi-hop questions. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 15686–15702. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.971. URL https://doi.org/10.18653/v1/2023.emnlp-main.971.
  10. Transformer feed-forward layers are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 5484–5495. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.446. URL https://doi.org/10.18653/v1/2021.emnlp-main.446.
  11. Transformer-patcher: One mistake worth one neuron. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=4oYUGeGBPm.
  12. Memory-based model editing at scale. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 15817–15831. PMLR, 2022a. URL https://proceedings.mlr.press/v162/mitchell22a.html.
  13. Locating and editing factual associations in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.
  14. Aging with GRACE: lifelong model editing with discrete key-value adaptors. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html.
  15. Can we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 4862–4876. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.296. URL https://doi.org/10.18653/v1/2023.emnlp-main.296.
  16. Knowledge neurons in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 8493–8502. Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.581. URL https://doi.org/10.18653/v1/2022.acl-long.581.
  17. Fast model editing at scale. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022b. URL https://openreview.net/forum?id=0DcZxeWfOPt.
  18. Stable knowledge editing in large language models. CoRR, abs/2402.13048, 2024b. doi: 10.48550/ARXIV.2402.13048. URL https://doi.org/10.48550/arXiv.2402.13048.
  19. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pages 311–318. ACL, 2002. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.
  20. Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74–81, 2004.
  21. Factscore: Fine-grained atomic evaluation of factual precision in long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 12076–12100. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.741. URL https://doi.org/10.18653/v1/2023.emnlp-main.741.
  22. Llama 2: Open foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.
  23. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.
  24. Zero-shot relation extraction via reading comprehension. In Roger Levy and Lucia Specia, editors, Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), Vancouver, Canada, August 3-4, 2017, pages 333–342. Association for Computational Linguistics, 2017. doi: 10.18653/V1/K17-1034. URL https://doi.org/10.18653/v1/K17-1034.
  25. A comprehensive study of knowledge editing for large language models. CoRR, abs/2401.01286, 2024b. doi: 10.48550/ARXIV.2401.01286. URL https://doi.org/10.48550/arXiv.2401.01286.
  26. Cross-lingual knowledge editing in large language models. CoRR, abs/2309.08952, 2023a. doi: 10.48550/ARXIV.2309.08952. URL https://doi.org/10.48550/arXiv.2309.08952.
  27. Retrieval-augmented multilingual knowledge editing. CoRR, abs/2312.13040, 2023b. doi: 10.48550/ARXIV.2312.13040. URL https://doi.org/10.48550/arXiv.2312.13040.
  28. Eva-kellm: A new benchmark for evaluating knowledge editing of llms. CoRR, abs/2308.09954, 2023. doi: 10.48550/ARXIV.2308.09954. URL https://doi.org/10.48550/arXiv.2308.09954.
  29. Adaptive chameleon or stubborn sloth: Revealing the behavior of large language models in knowledge conflicts, 2024.
  30. Easyedit: An easy-to-use knowledge editing framework for large language models. arXiv preprint arXiv:2308.07269, 2023c.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jingcheng Deng (9 papers)
  2. Zihao Wei (15 papers)
  3. Liang Pang (94 papers)
  4. Hanxing Ding (8 papers)
  5. Huawei Shen (119 papers)
  6. Xueqi Cheng (274 papers)
Citations (3)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets