Enhancing Generalized Fetal Brain MRI Segmentation using A Cascade Network with Depth-wise Separable Convolution and Attention Mechanism (2405.15205v1)
Abstract: Automatic segmentation of the fetal brain is still challenging due to the health state of fetal development, motion artifacts, and variability across gestational ages, since existing methods rely on high-quality datasets of healthy fetuses. In this work, we propose a novel cascade network called CasUNext to enhance the accuracy and generalization of fetal brain MRI segmentation. CasUNext incorporates depth-wise separable convolution, attention mechanisms, and a two-step cascade architecture for efficient high-precision segmentation. The first network localizes the fetal brain region, while the second network focuses on detailed segmentation. We evaluate CasUNext on 150 fetal MRI scans between 20 to 36 weeks from two scanners made by Philips and Siemens including axial, coronal, and sagittal views, and also validated on a dataset of 50 abnormal fetuses. Results demonstrate that CasUNext achieves improved segmentation performance compared to U-Nets and other state-of-the-art approaches. It obtains an average Dice coefficient of 96.1% and mean intersection over union of 95.9% across diverse scenarios. CasUNext shows promising capabilities for handling the challenges of multi-view fetal MRI and abnormal cases, which could facilitate various quantitative analyses and apply to multi-site data.
- S. J. Counsell, T. Arichi, S. Arulkumaran, and M. A. Rutherford, “Chapter 4 - fetal and neonatal neuroimaging,” in Neonatal Neurology, L. S. de Vries and H. C. Glass, Eds., 2019, vol. 162, pp. 67–103. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780444640291000047
- S. Tourbier, P. Hagmann, M. Cagneaux, L. Guibaud, S. Gorthi, M. Schaer, J.-P. Thiran, R. Meuli, and M. B. Cuadra, “Automatic brain extraction in fetal MRI using multi-atlas-based segmentation,” in Medical Imaging 2015: Image Processing, vol. 9413, International Society for Optics and Photonics. SPIE, 2015, p. 94130Y. [Online]. Available: https://doi.org/10.1117/12.2081777
- J. Dolz, C. Desrosiers, L. Wang, J. Yuan, D. Shen, and I. Ben Ayed, “Deep cnn ensembles and suggestive annotations for infant brain mri segmentation,” Computerized Medical Imaging and Graphics, vol. 79, p. 101660, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0895611119300771
- G. Li, L. Wang, P.-T. Yap, F. Wang, Z. Wu, Y. Meng, P. Dong, J. Kim, F. Shi, I. Rekik, W. Lin, and D. Shen, “Computational neuroanatomy of baby brains: A review,” NeuroImage, vol. 185, pp. 906–925, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1053811918302556
- D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual Review of Biomedical Engineering, vol. 19, no. 1, pp. 221–248, 2017, pMID: 28301734. [Online]. Available: https://doi.org/10.1146/annurev-bioeng-071516-044442
- Y. Sun, K. Gao, Z. Wu, G. Li, X. Zong, Z. Lei, Y. Wei, J. Ma, X. Yang, X. Feng, L. Zhao, T. Le Phan, J. Shin, T. Zhong, Y. Zhang, L. Yu, C. Li, R. Basnet, M. O. Ahmad, M. N. S. Swamy, W. Ma, Q. Dou, T. D. Bui, C. B. Noguera, B. Landman, I. H. Gotlib, K. L. Humphreys, S. Shultz, L. Li, S. Niu, W. Lin, V. Jewells, D. Shen, G. Li, and L. Wang, “Multi-site infant brain segmentation algorithms: The iseg-2019 challenge,” IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp. 1363–1376, 2021.
- L. Wang, D. Nie, G. Li, . Puybareau, J. Dolz, Q. Zhang, F. Wang, J. Xia, Z. Wu, J.-W. Chen, K.-H. Thung, T. D. Bui, J. Shin, G. Zeng, G. Zheng, V. S. Fonov, A. Doyle, Y. Xu, P. Moeskops, J. P. W. Pluim, C. Desrosiers, I. B. Ayed, G. Sanroma, O. M. Benkarim, A. Casamitjana, V. Vilaplana, W. Lin, G. Li, and D. Shen, “Benchmark on automatic six-month-old infant brain segmentation algorithms: The iseg-2017 challenge,” IEEE Transactions on Medical Imaging, vol. 38, no. 9, pp. 2219–2230, 2019.
- S. S. M. Salehi, S. R. Hashemi, C. Velasco-Annis, A. Ouaalam, J. A. Estroff, D. Erdogmus, S. K. Warfield, and A. Gholipour, “Real-time automatic fetal brain extraction in fetal mri by deep learning,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 720–724.
- P. Durgadevi and S. Vijayalakshmi, “A methodological investigation for fetal brain mri segmentation techniques - analysis,” in 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2021, pp. 684–690.
- A. Gholipour, C. K. Rollins, C. Velasco-Annis, A. Ouaalam, A. Akhondi-Asl, O. Afacan, C. M. Ortinau, S. Clancy, C. Limperopoulos, E. Yang, J. A. Estroff, and S. K. Warfield, “A normative spatiotemporal mri atlas of the fetal brain for automatic segmentation and analysis of early brain growth,” in Scientific Reports, 2017.
- M. Rajchl, M. C. H. Lee, O. Oktay, K. Kamnitsas, J. Passerat-Palmbach, W. Bai, M. Damodaram, M. A. Rutherford, J. V. Hajnal, B. Kainz, and D. Rueckert, “Deepcut: Object segmentation from bounding box annotations using convolutional neural networks,” IEEE Transactions on Medical Imaging, vol. 36, no. 2, pp. 674–683, 2017.
- J. Lou, D. Li, T. D. Bui, F. Zhao, L. Sun, G. Li, and D. Shen, “Automatic fetal brain extraction using multi-stage u-net with deep supervision,” in Machine Learning in Medical Imaging, H.-I. Suk, M. Liu, P. Yan, and C. Lian, Eds. Cham: Springer International Publishing, 2019, pp. 592–600.
- J. Li, Y. Luo, L. Shi, X. Zhang, M. Li, B. Zhang, and D. Wang, “Automatic fetal brain extraction from 2d in utero fetal mri slices using deep neural network,” Neurocomputing, vol. 378, pp. 335–349, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231219314080
- M. Ebner, G. Wang, W. Li, M. Aertsen, P. A. Patel, R. Aughwane, A. Melbourne, T. Doel, S. Dymarkowski, P. De Coppi, A. L. David, J. Deprest, S. Ourselin, and T. Vercauteren, “An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain mri,” NeuroImage, vol. 206, p. 116324, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1053811919309152
- J. Chen, Z. Fang, G. Zhang, L. Ling, G. Li, H. Zhang, and L. Wang, “Automatic brain extraction from 3d fetal mr image with deep learning-based multi-step framework,” Computerized Medical Imaging and Graphics, vol. 88, p. 101848, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0895611120301439
- X. Zhang, Z. Cui, C. Chen, J. Wei, J. Lou, W. Hu, H. Zhang, T. Zhou, F. Shi, and D. Shen, “Confidence-aware cascaded network for fetal brain segmentation on mr images,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert, Eds. Cham: Springer International Publishing, 2021, pp. 584–593.
- Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 11 976–11 986.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” 2021.
- K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 16 000–16 009.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 10 012–10 022.
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp. 234–241.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
- T. Kalaiselvi and S. Padmapriya, “8 - multimodal mri brain tumor segmentation—a resnet-based u-net approach,” in Brain Tumor MRI Image Segmentation Using Deep Learning Techniques, J. Chaki, Ed. Academic Press, 2022, pp. 123–135. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323911719000132
- O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, “Attention u-net: Learning where to look for the pancreas,” 2018.
- L. Pan and Z. Xiao, “A convnext backbone-based medical image segmentation model for brain glioma,” in CIBDA 2022; 3rd International Conference on Computer Information and Big Data Applications, 2022, pp. 1–4.
- Z. Han, M. Jian, and G.-G. Wang, “Convunext: An efficient convolution neural network for medical image segmentation,” Knowledge-Based Systems, vol. 253, p. 109512, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705122007572