Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental realization of vortex and vectorial vortex Pearcey-Gauss Beams (2405.15183v1)

Published 24 May 2024 in physics.optics

Abstract: In this manuscript, we put forward two new types of structured light beams, the vortex Pearcey-Gauss (VPeG) beam, with a homogeneous polarisation distribution, and the vector vortex Pearcey-Gauss (VVPeG) beam, with a non-homogeneous polarisation distribution. The later generated as a non-separable superposition of the spatial and polarisation degrees of freedom. We also achieve their experimental realization through the combination of a spatial light modulator, which creates a scalar Pearcey-Gauss beam, and a q-plate which transforms it into a vortex or a vortex vector beam, depending on its input polarisation state. Their intensity and polarisation distribution was performed through Stokes polarimetry, along the propagation direction, which was compared with numerical simulations. As demonstrated, the VVPeG beam evolves from a pure vector beam into a vector mode of quasi-homogeneous polarisation distribution. The proposed vector beams add to the already extensive family of non-separable states of light. We anticipate that both types of beams will find applications in fields as diverse as optical metrology, optical communications, and optical tweezers, amongst others.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Shen Y and Rosales-Guzmán C 2022 Laser & Photonics Reviews 16 2100533
  2. Forbes A, de Oliveira M and Dennis M R 2021 Nat. Photon. 15 253–262
  3. Zhan Q 2009 Adv. Opt. Photonics 1 1–57
  4. Rosales-Guzmán C, Ndagano B and Forbes A 2018 J. Opt. 20 123001
  5. Forbes A, Aiello A and Ndagano B 2019 Classically entangled light Progress in Optics (Elsevier Ltd.) pp 99–153
  6. Qian X F, Vamivakas A N and Eberly J H 2017 Opt. Photon. News 28 34–41
  7. Spreeuw R J C 1998 Found. Phys. 28 361–374
  8. Rosales-Guzmán C and Forbes A 2017 How to shape light with spatial light modulators (SPIE Press)
  9. Hu X B and Rosales-Guzmán C 2022 Journal of Optics 24 034001
  10. Savage N 2009 Nature Photonics 3 170–172
  11. Beckley A M, Brown T G and Alonso M A 2010 Opt. Express 18 10777–10785
  12. Berry M V and Upstill C 1980 Progress in Optics 18(C) 257–346
  13. Arnol’d V, Wassermann G and Thomas R 2003 Catastrophe Theory (Springer Berlin Heidelberg) ISBN 9783540548119 URL https://books.google.com.mx/books?id=GQoQyqia45gC
  14. Wang Y 2021 J. Opt. Soc. Am. A 38 1726–1731
  15. Cheng K, Lu G and Zhong X 2017 Applied Physics B 123 60 ISSN 1432-0649
  16. Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905
  17. Driscoll T A, Hale N and Trefethen L N 2014 Chebfun Guide (Pafnuty Publications)
  18. Olver S and Townsend A 2014 A practical framework for infinite-dimensional linear algebra Proceedings of the 1st Workshop for High Performance Technical Computing in Dynamic Languages – HPTCDL ‘14 (IEEE)
  19. Goodman J W 2005 Introduction to Fourier optics (Roberts & company)
  20. Arrizón V 2003 Opt. Lett. 28 1359–1361
  21. Goldstein D H 2011 Polarized light (CRC Press)
  22. Roux F S 2003 Optics Communications 223(1-3) 31–37 ISSN 0030-4018
  23. Cheng K, Lu G and Zhong X 2017 Optik 149 189–197

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com