Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Critical exponents of correlated percolation of sites not visited by a random walk (2405.14950v3)

Published 23 May 2024 in cond-mat.stat-mech

Abstract: We consider a $d$-dimensional correlated percolation problem of sites {\em not} visited by a random walk on a hypercubic lattice $Ld$ for $d=3$, 4 and 5. The length of the random walk is ${\cal N}=uLd$. Close to the critical value $u=u_c$, many geometrical properties of the problem can be described as powers (critical exponents) of $u_c-u$, such as $\beta$, which controls the strength of the spanning cluster, and $\gamma$, which characterizes the behavior of the mean finite cluster size $S$. We show that at $u_c$ the ratio between the mean mass of the largest cluster $M_1$ and the mass of the second largest cluster $M_2$ is independent of $L$ and can be used to find $u_c$. We calculate $\beta$ from the $L$-dependence of $M_2$ and $\gamma$ from the finite size scaling of $S$. The resulting exponent $\beta$ remains close to 1 in all dimensions. The exponent $\gamma$ decreases from $\approx 3.9$ in $d=3$ to $\approx1.9$ in $d=4$ and $\approx 1.3$ in $d=5$ towards $\gamma=1$ expected in $d=6$, which is close to $\gamma=4/(d-2)$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets