Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissecting Query-Key Interaction in Vision Transformers (2405.14880v3)

Published 4 Apr 2024 in cs.CV and cs.AI

Abstract: Self-attention in vision transformers is often thought to perform perceptual grouping where tokens attend to other tokens with similar embeddings, which could correspond to semantically similar features of an object. However, attending to dissimilar tokens can be beneficial by providing contextual information. We propose to analyze the query-key interaction by the singular value decomposition of the interaction matrix (i.e. ${\textbf{W}_q}\top\textbf{W}_k$). We find that in many ViTs, especially those with classification training objectives, early layers attend more to similar tokens, while late layers show increased attention to dissimilar tokens, providing evidence corresponding to perceptual grouping and contextualization, respectively. Many of these interactions between features represented by singular vectors are interpretable and semantic, such as attention between relevant objects, between parts of an object, or between the foreground and background. This offers a novel perspective on interpreting the attention mechanism, which contributes to understanding how transformer models utilize context and salient features when processing images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xu Pan (20 papers)
  2. Aaron Philip (2 papers)
  3. Ziqian Xie (3 papers)
  4. Odelia Schwartz (5 papers)
Citations (1)