Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-Based Intermittent CSI Estimation with Adaptive Intervals in Integrated Sensing and Communication Systems (2405.14724v2)

Published 23 May 2024 in eess.SP, cs.IT, and math.IT

Abstract: Due to the distinct objectives and multipath utilization mechanisms between the communication module and radar module, the system design of integrated sensing and communication (ISAC) necessitates two types of channel state information (CSI), i.e., communication CSI representing the whole channel gain and phase shifts, and radar CSI exclusively focused on target mobility and position information. However, current ISAC systems apply an identical mechanism to estimate both types of CSI at the same predetermined estimation interval, leading to significant overhead and compromised performances. Therefore, this paper proposes an intermittent communication and radar CSI estimation scheme with adaptive intervals for individual users/targets, where both types of CSI can be predicted using channel temporal correlations for cost reduction or re-estimated via training signal transmission for improved estimation accuracy. Specifically, we jointly optimize the binary CSI re-estimation/prediction decisions and transmit beamforming matrices for individual users/targets to maximize communication transmission rates and minimize radar tracking errors and costs in a multiple-input single-output (MISO) ISAC system. Unfortunately, this problem has causality issues because it requires comparing system performances under re-estimated CSI and predicted CSI during the optimization. Additionally, the binary decision makes the joint design a mixed integer nonlinear programming (MINLP) problem, resulting in high complexity when using conventional optimization algorithms. Therefore, we propose a deep reinforcement online learning (DROL) framework that first implements an online deep neural network (DNN) to learn the binary CSI updating decisions from the experiences. Given the learned decisions, we propose an efficient algorithm to solve the remaining beamforming design problem efficiently.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, 2020.
  2. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu et al., “A survey on fundamental limits of integrated sensing and communication,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 994–1034, 2022.
  3. J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and J. Yuan, “Enabling joint communication and radar sensing in mobile networks—a survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 306–345, 2021.
  4. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, 2022.
  5. N. C. Luong, X. Lu, D. T. Hoang, D. Niyato, and D. I. Kim, “Radio resource management in joint radar and communication: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 780–814, 2021.
  6. Q. Zhang, H. Sun, X. Gao, X. Wang, and Z. Feng, “Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2206–2218, 2022.
  7. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, 2020.
  8. M. Rihan and L. Huang, “Optimum co-design of spectrum sharing between MIMO radar and MIMO communication systems: An interference alignment approach,” IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 11 667–11 680, 2018.
  9. Z. Lyu, G. Zhu, and J. Xu, “Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2424–2440, 2023.
  10. X. Yu, Q. Yang, Z. Xiao, H. Chen, V. Havyarimana, and Z. Han, “A precoding approach for dual-functional radar-communication system with one-bit dacs,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1965–1977, 2022.
  11. A. Bazzi and M. Chafii, “On outage-based beamforming design for dual-functional radar-communication 6G systems,” IEEE Trans. Wireless Commun., 2023.
  12. L. Chen, Z. Wang, Y. Du, Y. Chen, and F. R. Yu, “Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1795–1808, 2022.
  13. J. Qian, M. Lops, L. Zheng, X. Wang, and Z. He, “Joint system design for coexistence of MIMO radar and MIMO communication,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3504–3519, 2018.
  14. H. Hua, X. Song, Y. Fang, T. X. Han, and J. Xu, “MIMO integrated sensing and communication with extended target: CRB-rate tradeoff,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2022, pp. 4075–4080.
  15. X. Mu, Y. Liu, L. Guo, J. Lin, and L. Hanzo, “NOMA-aided joint radar and multicast-unicast communication systems,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1978–1992, 2022.
  16. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, 2018.
  17. X. Hu, C. Masouros, F. Liu, and R. Nissel, “Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications,” in Proc. IEEE Inter. Conf. Commun. (ICC), 2022, pp. 1599–1604.
  18. F. Liu, W. Yuan, C. Masouros, and J. Yuan, “Radar-assisted predictive beamforming for vehicular links: Communication served by sensing,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7704–7719, 2020.
  19. W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, and N. González-Prelcic, “Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1442–1456, 2020.
  20. C. Liu, W. Yuan, S. Li, X. Liu, H. Li, D. W. K. Ng, and Y. Li, “Learning-based predictive beamforming for integrated sensing and communication in vehicular networks,” IEEE J. Sel. Areas Commun., vol. 40, no. 8, pp. 2317–2334, 2022.
  21. L. Wu, K. V. Mishra, M. B. Shankar, and B. Ottersten, “Resource allocation in heterogeneously-distributed joint radar-communications under asynchronous bayesian tracking framework,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2026–2042, 2022.
  22. R. Deng, Z. Jiang, S. Zhou, and Z. Niu, “Intermittent CSI update for massive MIMO systems with heterogeneous user mobility,” IEEE Trans. Commun., vol. 67, no. 7, pp. 4811–4824, 2019.
  23. R. Chopra, C. R. Murthy, and H. A. Suraweera, “On the throughput of large MIMO beamforming systems with channel aging,” IEEE Signal Process. Lett., vol. 23, no. 11, pp. 1523–1527, 2016.
  24. S. H. Lim, S. Kim, B. Shim, and J. W. Choi, “Efficient beam training and sparse channel estimation for millimeter wave communications under mobility,” IEEE Trans. Commun., vol. 68, no. 10, pp. 6583–6596, 2020.
  25. J. Yan, H. Liu, B. Jiu, B. Chen, Z. Liu, and Z. Bao, “Simultaneous multibeam resource allocation scheme for multiple target tracking,” IEEE Trans. Signal Process., vol. 63, no. 12, pp. 3110–3122, 2015.
  26. H. Sun, M. Li, L. Zuo, and P. Zhang, “Resource allocation for multitarget tracking and data reduction in radar network with sensor location uncertainty,” IEEE Trans. Signal Process., vol. 69, pp. 4843–4858, 2021.
  27. J. Sun, W. Yi, P. K. Varshney, and L. Kong, “Resource scheduling for multi-target tracking in multi-radar systems with imperfect detection,” IEEE Trans. Signal Process., vol. 70, pp. 3878–3893, 2022.
  28. J. Chen, X. Wang, and Y.-C. Liang, “Impact of channel aging on dual-function radar-communication systems: Performance analysis and resource allocation,” IEEE Trans. Commun., vol. 71, no. 8, pp. 4972–4986, 2023.
  29. H. Chen, T. D. Todd, D. Zhao, and G. Karakostas, “Wireless and service allocation for mobile computation offloading with task deadlines,” IEEE Trans. Mobile Comput., 2023, (early access), doi: 10.1109/TMC.2023.3301577.
  30. P. Jia and X. Wang, “A new virtual network topology based digital twin for spatial-temporal load-balanced user association in 6G hetnets,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3080– 3094, 2023.
  31. H. Chen, D. Zhao, Q. Chen, and R. Chai, “Joint computation offloading and radio resource allocations in small-cell wireless cellular networks,” IEEE Trans. Green Commun. Netw., vol. 4, no. 3, pp. 745–758, 2020.
  32. H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3064–3076, 2020.
  33. J. Chen, L. Zhang, Y.-C. Liang, X. Kang, and R. Zhang, “Resource allocation for wireless-powered IoT networks with short packet communication,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1447–1461, 2019.
  34. M. Baghani, S. Parsaeefard, M. Derakhshani, and W. Saad, “Dynamic non-orthogonal multiple access and orthogonal multiple access in 5G wireless networks,” IEEE Trans. Commun., vol. 67, no. 9, pp. 6360–6373, 2019.
  35. J. Mei, W. Han, X. Wang, and H. V. Poor, “Multi-dimensional multiple access with resource utilization cost awareness for individualized service provisioning in 6G,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1237–1252, 2022.
  36. J. Chen, L. Zhang, and Y.-C. Liang, “Exploiting Gaussian mixture model clustering for full-duplex transceiver design,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5802–5816, 2019.
  37. L. Gaudio, M. Kobayashi, B. Bissinger, and G. Caire, “Performance analysis of joint radar and communication using OFDM and OTFS,” in Proc. IEEE Inter. Conf. Commun. Workshops (ICC Workshops ), 2019, pp. 1–6.
  38. K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1650–1662, 2005.
  39. C. B. Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer, K. Stadius, J. Ryynänen, and M. Valkama, “Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements,” IEEE Trans. Microwave Theory Tech., vol. 67, no. 10, pp. 4042–4054, 2019.
  40. K. M. Braun, “OFDM radar algorithms in mobile communication networks,” Ph.D. dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2014, 2014.
  41. A. K. Papazafeiropoulos, “Impact of general channel aging conditions on the downlink performance of massive MIMO,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1428–1442, Feb. 2016.
  42. Y. Omid, S. M. Shahabi, C. Pan, Y. Deng, and A. Nallanathan, “Low-complexity robust beamforming design for IRS-aided MISO systems with imperfect channels,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1697–1701, 2021.
  43. J. Chen, Y.-C. Liang, H. V. Cheng, and W. Yu, “Channel estimation for reconfigurable intelligent surface aided multi-user mmwave MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 10, pp. 6853–6869, 2023.
  44. L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11, pp. 2581–2593, 2019.
  45. X. Yu and D. Li, “Phase shift compression for control signaling reduction in irs-aided wireless systems: Global attention and lightweight design,” IEEE Trans. Wireless Commun., 2024, (early access), doi: 10.1109/TWC.2024.3351755.
  46. W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization of multicarrier systems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1310–1322, 2006.
  47. D. H. Nguyen and R. W. Heath, “Delay and doppler processing for multi-target detection with IEEE 802.11 OFDM signaling,” in Proc. Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2017, pp. 3414–3418.
  48. O. Onubogu, K. Ziri-Castro, D. Jayalath, K. Ansari, and H. Suzuki, “Empirical vehicle-to-vehicle pathloss modeling in highway, suburban and urban environments at 5.8 GHz,” in Proc. 8th Int. Conf. Signal Process. and Commun. Syst. (ICSPCS), 2014, pp. 1–6.
  49. B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.
  50. N. Garcia, A. M. Haimovich, M. Coulon, and M. Lops, “Resource allocation in MIMO radar with multiple targets for non-coherent localization,” IEEE Trans. Signal Process., vol. 62, no. 10, pp. 2656–2666, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com