Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum amplitude estimation from classical signal processing (2405.14697v2)

Published 23 May 2024 in quant-ph

Abstract: We demonstrate that the problem of amplitude estimation, a core subroutine used in many quantum algorithms, can be mapped directly to a problem in signal processing called direction of arrival (DOA) estimation. The DOA task is to determine the direction of arrival of an incoming wave with the fewest possible measurements. The connection between amplitude estimation and DOA allows us to make use of the vast amount of signal processing algorithms to post-process the measurements of the Grover iterator at predefined depths. Using an off-the-shelf DOA algorithm called ESPRIT together with a compressed-sensing based sampling approach, we create a phase-estimation free, parallel quantum amplitude estimation (QAE) algorithm with a worst-case sequential query complexity of $\sim 4.3/\varepsilon$ and a parallel query complexity of $\sim 0.26/\varepsilon$ at 95% confidence. This performance is statistically equivalent and a $16\times$ improvement over Rall and Fuller [Quantum 7, 937 (2023)], for sequential and parallel query complexity respectively, which to our knowledge is the best published result for amplitude estimation. The approach presented here provides a simple, robust, parallel method to performing QAE, with many possible avenues for improvement borrowing ideas from the wealth of literature in classical signal processing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A. Montanaro, Quantum speedup of monte carlo methods, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, 20150301 (2015).
  2. P. Rebentrost, B. Gupt, and T. R. Bromley, Quantum computational finance: Monte carlo pricing of financial derivatives, Phys. Rev. A 98, 022321 (2018).
  3. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009).
  4. B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013).
  5. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  6. S. Aaronson and P. Rall, Quantum approximate counting, simplified, in Symposium on simplicity in algorithms (SIAM, 2020) pp. 24–32.
  7. R. Venkateswaran and R. O’Donnell, Quantum approximate counting with nonadaptive grover iterations,   (2020), arXiv:2010.04370 [quant-ph] .
  8. P. Rall and B. Fuller, Amplitude Estimation from Quantum Signal Processing, Quantum 7, 937 (2023).
  9. H. Krim and M. Viberg, Two decades of array signal processing research: the parametric approach, IEEE Signal Processing Magazine 13, 67 (1996).
  10. J. Gamba, Radar Signal Processing for Autonomous Driving, 1st ed. (Springer Publishing Company, Incorporated, 2019) Chap. 6.
  11. P. Pal and P. P. Vaidyanathan, Coprime sampling and the music algorithm, in 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE) (2011) pp. 289–294.
  12. P. Pal and P. Vaidyanathan, Multiple level nested array: An efficient geometry for 2⁢q2𝑞2q2 italic_q th order cumulant based array processing, IEEE Transactions on Signal Processing 60, 1253 (2011b).
  13. R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation 34, 276 (1986).
  14. R. Kothari and R. O’Donnell, Mean estimation when you have the source code; or, quantum monte carlo methods, in Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (SIAM, 2023) pp. 1186–1215.
  15. C.-L. Liu and P. P. Vaidyanathan, Remarks on the spatial smoothing step in coarray music, IEEE Signal Processing Letters 22, 1438 (2015).
  16. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, Journal of Research of the National Bureau of Standards 45, 10.6028/jres.045.026 (1950).
  17. G. Golub and C. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, 1996).
  18. P. Chevalier and A. Ferreol, On the virtual array concept for the fourth-order direction finding problem, IEEE Transactions on Signal Processing 47, 2592 (1999).
  19. P. Chevalier, A. Ferreol, and L. Albera, High-resolution direction finding from higher order statistics: The2⁢r⁢m⁢q2𝑟𝑚𝑞2rmq2 italic_r italic_m italic_q-music algorithm, IEEE Transactions on Signal Processing 54, 2986 (2006).
  20. N. J. Ross and P. Selinger, Optimal ancilla-free clifford+t approximation of z-rotations, Quantum Info. Comput. 16, 901–953 (2016).
  21. C. Gidney, Halving the cost of quantum addition, Quantum 2, 74 (2018).
  22. N. Stamatopoulos and W. J. Zeng, Derivative pricing using quantum signal processing, Quantum 8, 1322 (2024).
  23. D. Sengupta and S. Palit, Arrival angle estimation in non-gaussian noise, in Proceedings of ICASSP ’94. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. iv (1994) pp. IV/221–IV/224 vol.4.
  24. D. Wang, O. Higgott, and S. Brierley, Accelerated variational quantum eigensolver, Phys. Rev. Lett. 122, 140504 (2019).
  25. S. Shakeri, D. D. Ariananda, and G. Leus, Direction of arrival estimation using sparse ruler array design, in 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2012) pp. 525–529.
  26. R. Cohen and Y. C. Eldar, Sparse array design via fractal geometries, IEEE Transactions on Signal Processing 68, 4797 (2020).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com