Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entrywise error bounds for low-rank approximations of kernel matrices (2405.14494v2)

Published 23 May 2024 in math.ST, cs.LG, and stat.TH

Abstract: In this paper, we derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition (or singular value decomposition). While this approximation is well-known to be optimal with respect to the spectral and Frobenius norm error, little is known about the statistical behaviour of individual entries. Our error bounds fill this gap. A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues, which takes inspiration from the field of Random Matrix Theory. Finally, we validate our theory with an empirical study of a collection of synthetic and real-world datasets.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com