Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A high-level comparison of state-of-the-art quantum algorithms for breaking asymmetric cryptography (2405.14381v1)

Published 23 May 2024 in cs.CR and quant-ph

Abstract: We provide a high-level cost comparison between Regev's quantum algorithm with Eker{\aa}-G\"artner's extensions on the one hand, and existing state-of-the-art quantum algorithms for factoring and computing discrete logarithms on the other. This when targeting cryptographically relevant problem instances, and when accounting for the space-saving optimizations of Ragavan and Vaikuntanathan that apply to Regev's algorithm, and optimizations such as windowing that apply to the existing algorithms. Our conclusion is that Regev's algorithm without the space-saving optimizations may achieve a per-run advantage, but not an overall advantage, if non-computational quantum memory is cheap. Regev's algorithm with the space-saving optimizations does not achieve an advantage, since it uses more computational memory, whilst also performing more work, per run and overall, compared to the existing state-of-the-art algorithms. As such, further optimizations are required for it to achieve an advantage for cryptographically relevant problem instances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Y. Chen: Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe (2013). PhD thesis. Université Paris Diderot (Paris 7).
  2. D. Coppersmith: An approximate Fourier transform useful in quantum factoring. ArXiv quant-ph/0201067 (2002). (Also IBM Research Report RC 19642.)
  3. W. Diffie and M.E. Hellman: New Directions in Cryptography. IEEE Trans. Inf. Theory 22(6) (1976), 644–654.
  4. M. Ekerå and J. Håstad: Quantum algorithms for computing short discrete logarithms and factoring RSA integers. In: PQCrypto 2017. Lecture Notes in Computer Science (LNCS) 10346 (2017), 347–363.
  5. M. Ekerå: On post-processing in the quantum algorithm for computing short discrete logarithms. Des. Codes Cryptogr. 88(11) (2020), 2313–2335.
  6. M. Ekerå: Quantum algorithms for computing general discrete logarithms and orders with tradeoffs. J. Math. Cryptol. 15(1) (2021), 359–407.
  7. M. Ekerå: Revisiting Shor’s quantum algorithm for computing general discrete logarithms. ArXiv 1905.09084v3 (2019–2023).
  8. M. Ekerå: On the success probability of the quantum algorithm for the short DLP. ArXiv 2309.01754v1 (2023).
  9. M. Ekerå: Qunundrum. GitHub repository ekera/qunundrum (2020–2024). (Retrieved from URL: https://github.com/ekera/qunundrum)
  10. M. Ekerå and J. Gärtner: Extending Regev’s factoring algorithm to compute discrete logarithms. ArXiv 2311.05545v2 (2023–2024).
  11. M. Ekerå and J. Gärtner: Simulating Regev’s quantum factoring algorithm and Ekerå–Gärtner’s extensions to discrete logarithm finding, order finding and factoring via order finding. GitHub repository ekera/regevnum (2023–2024). (Retrieved from URL: https://github.com/ekera/regevnum)
  12. C. Gidney and M. Ekerå: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).
  13. C. Gidney: Windowed quantum arithmetic. ArXiv 1905.07682v1 (2019)
  14. D. Gillmor: RFC 7919: Negotiated Finite Field Diffie–Hellman Ephemeral Parameters for Transport Layer Security (TLS) (2016).
  15. T. Kivinen and M. Kojo: RFC 3526: More Modular Exponentiation (MODP) Diffie–Hellman groups for Internet Key Exchange (2003).
  16. M. Mosca and A. Ekert: The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer. In: QCQC 1998. Lecture Notes in Computer Science (LNCS) 1509 (1999), 174–188.
  17. National Institute of Standards and Technology (NIST): FIPS 186: Digital Signature Standard (DSS) (1994).
  18. National Institute of Standards and Technology (NIST): FIPS 186-5: Digital Signature Standard (DSS) (2023).
  19. National Institute of Standards and Technology (NIST) and Canadian Centre for Cyber Security (CCCS): Implementation guidance for FIPS 140-2 and the cryptographic module validation program (2023). (Dated October 30, 2023.)
  20. S. Parker and M.B. Plenio: Efficient Factorization with a Single Pure Qubit and log⁡N𝑁\log Nroman_log italic_N Mixed Qubits. Phys. Rev. Lett. 85(14) (2000), 3049–3052.
  21. C. Pilatte: Unconditional correctness of recent quantum algorithms for factoring and computing discrete logarithms. ArXiv 2404.16450v1 (2024).
  22. S. Ragavan and V. Vaikuntanathan: Optimizing Space in Regev’s Factoring Algorithm. ArXiv 2310.00899v1 (2023).
  23. S. Ragavan and V. Vaikuntanathan: Space-Efficient and Noise-Robust Quantum Factoring. ArXiv 2310.00899v3 (2024).
  24. S. Ragavan: Regev factoring beyond Fibonacci: Optimizing prefactors. IACR ePrint 2024/636 (2024). (Dated 2024-05-09.)
  25. O. Regev: An Efficient Quantum Factoring Algorithm. ArXiv 2308.06572v2 (2023).
  26. C.-P. Schnorr and M. Euchner: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Math. Program. 66(1–3) (1994), 181–199.
  27. P.W. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5) (1997), 1484–1509.
  28. R. Van Meter and K.M. Itoh: Fast quantum modular exponentiation. Phys. Rev. A 71(5):052320 (2005), 1–12.
  29. R. Van Meter: Architecture of a Quantum Multicomputer Optimized for Shor’s Factoring Algorithm (2008). PhD thesis. Keio University.
Citations (2)

Summary

We haven't generated a summary for this paper yet.