Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Breakdowns in Conversational Recommender Systems using User Simulation (2405.14249v1)

Published 23 May 2024 in cs.IR

Abstract: We present a methodology to systematically test conversational recommender systems with regards to conversational breakdowns. It involves examining conversations generated between the system and simulated users for a set of pre-defined breakdown types, extracting responsible conversational paths, and characterizing them in terms of the underlying dialogue intents. User simulation offers the advantages of simplicity, cost-effectiveness, and time efficiency for obtaining conversations where potential breakdowns can be identified. The proposed methodology can be used as diagnostic tool as well as a development tool to improve conversational recommendation systems. We apply our methodology in a case study with an existing conversational recommender system and user simulator, demonstrating that with just a few iterations, we can make the system more robust to conversational breakdowns.

Citations (1)

Summary

We haven't generated a summary for this paper yet.