Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restriction theorems for the $p$-analog of the Fourier-Stieltjes algebra (2405.14227v1)

Published 23 May 2024 in math.FA

Abstract: For a locally compact group $G$ and $1 < p < \infty,$ let $B_p(G)$ denote the $p$-analog of the Fourier-Stieltjes algebra $B(G) \, (\text{or} \, B_2(G))$. Let $r: B_p(G) \to B_p(H)$ be the restriction map given by $r(u) = u|_H$ for any closed subgroup $H$ of $G.$ In this article, we prove that the restriction map $r$ is a surjective isometry for any open subgroup $H$ of $G.$ Further, we show that the range of the map $r$ is dense in $B_p(H)$ when $H$ is either a compact normal subgroup of $G$ or compact subgroup of an [SIN]$_H$-group.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com