Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Canonicalization for Model Agnostic Equivariance (2405.14089v1)

Published 23 May 2024 in cs.LG

Abstract: This work introduces a novel approach to achieving architecture-agnostic equivariance in deep learning, particularly addressing the limitations of traditional equivariant architectures and the inefficiencies of the existing architecture-agnostic methods. Building equivariant models using traditional methods requires designing equivariant versions of existing models and training them from scratch, a process that is both impractical and resource-intensive. Canonicalization has emerged as a promising alternative for inducing equivariance without altering model architecture, but it suffers from the need for highly expressive and expensive equivariant networks to learn canonical orientations accurately. We propose a new method that employs any non-equivariant network for canonicalization. Our method uses contrastive learning to efficiently learn a unique canonical orientation and offers more flexibility for the choice of canonicalization network. We empirically demonstrate that this approach outperforms existing methods in achieving equivariance for large pretrained models and significantly speeds up the canonicalization process, making it up to 2 times faster.

Citations (3)

Summary

We haven't generated a summary for this paper yet.