Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Node-Time Conditional Prompt Learning In Dynamic Graphs (2405.13937v8)

Published 22 May 2024 in cs.LG

Abstract: Dynamic graphs capture evolving interactions between entities, such as in social networks, online learning platforms, and crowdsourcing projects. For dynamic graph modeling, dynamic graph neural networks (DGNNs) have emerged as a mainstream technique. However, they are generally pre-trained on the link prediction task, leaving a significant gap from the objectives of downstream tasks such as node classification. To bridge the gap, prompt-based learning has gained traction on graphs, but most existing efforts focus on static graphs, neglecting the evolution of dynamic graphs. In this paper, we propose DYGPROMPT, a novel pre-training and prompt learning framework for dynamic graph modeling. First, we design dual prompts to address the gap in both task objectives and temporal variations across pre-training and downstream tasks. Second, we recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks. Finally, we thoroughly evaluate and analyze DYGPROMPT through extensive experiments on four public datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.