Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Programmable quantum circuits in a large-scale photonic waveguide array (2405.13654v1)

Published 22 May 2024 in quant-ph and physics.optics

Abstract: Over the past decade, integrated quantum photonic technologies have shown great potential as a platform for studying quantum phenomena and realizing large-scale quantum information processing. Recently, there have been proposals for utilizing waveguide lattices to implement quantum gates, providing a more compact and robust solution compared to discrete implementation with directional couplers and phase shifters. We report on the first demonstration of precise control of single photon states on an $11\times 11$ continuously-coupled programmable waveguide array. Through electro-optical control, the array is subdivided into decoupled subcircuits and the degree of on-chip quantum interference can be tuned with a maximum visibility of 0.962$\pm$0.013. Furthermore, we show simultaneous control of two subcircuits on a single device. Our results demonstrate the potential of using this technology as a building block for quantum information processing applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. D. P. DiVincenzo, The physical implementation of quantum computation, Fortschritte der Physik 48, 771 (2000).
  2. E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409, 46 (2001).
  3. J. L. O’Brien, A. Furusawa, and J. Vučković, Photonic quantum technologies, Nature Photonics 3, 687 (2009).
  4. D. A. B. Miller, Perfect optics with imperfect components, Optica 2, 747 (2015).
  5. D. Marpaung, J. Yao, and J. Capmany, Integrated microwave photonics, Nature Photonics 13, 80 (2019).
  6. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424, 817 (2003).
  7. A. Blanco-Redondo, Topological nanophotonics: Toward robust quantum circuits, Proceedings of the IEEE 108, 837 (2020).
  8. E. Compagno, L. Banchi, and S. Bose, Toolbox for linear optics in a one-dimensional lattice via minimal control, Physical Review A 92, 022701 (2015).
  9. E. Paspalakis, Adiabatic three-waveguide directional coupler, Optics Communications 258, 30 (2006).
  10. J. L. O’Brien, Optical quantum computing, Science 318, 1567 (2007).
  11. C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Physical Review Letters 59, 2044 (1987).
  12. A. Prencipe and K. Gallo, Electro- and thermo-optics response of x-cut thin film linbo3 waveguides, IEEE Journal of Quantum Electronics 59, 1 (2023).
  13. A. Laing and J. L. O’Brien, Super-stable tomography of any linear optical device, Preprint at https://arxiv.org/abs/1208.2868 (2012).
  14. A. Aspuru-Guzik and P. Walther, Photonic quantum simulators, Nature Physics 8, 285 (2012).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com