Papers
Topics
Authors
Recent
Search
2000 character limit reached

Coherent feedback control for cavity optomechanical systems with a frequency-dependent mirror

Published 22 May 2024 in quant-ph | (2405.13624v3)

Abstract: Ground-state cooling of mechanical resonators is a prerequisite for the observation of various quantum effects in optomechanical systems and thus has always been a crucial task in quantum optomechanics. In this paper, we study how to realize ground-state cooling of the mechanical mode in a Fano-mirror optomechanical setup, which allows for enhanced effective optomechanical interaction but typically works in the (deeply) unresolved-sideband regime. We reveal that for such a two-sided cavity geometry with very different decay rates at the two cavity mirrors, it is possible to cool the mechanical mode down to its ground state within a broad range of parameters by using an appropriate single-sided coherent feedback. This is possible even if the total optical loss is more than seven orders of magnitude larger than the mechanical frequency and the feedback efficiency is relatively low. Importantly, we show that a more standard double-sided feedback scheme is not appropriate to cooperate with a Fano-mirror system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  2. C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys. 4, 555 (2008).
  3. E. Gavartin, P. Verlot, and T. J. Kippenberg, A hybrid on-chip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol. 7, 509 (2012).
  4. O. Černotík, S. Mahmoodian, and K. Hammerer, Spatially adiabatic frequency conversion in optoelectromechanical arrays, Phys. Rev. Lett. 121, 110506 (2018).
  5. C. Sommer and C. Genes, Partial optomechanical refrigeration via multimode cold-damping feedback, Phys. Rev. Lett. 123, 203605 (2019).
  6. C. Sommer, A. Ghosh, and C. Genes, Multimode cold-damping optomechanics with delayed feedback, Phys. Rev. Res. 2, 033299 (2020).
  7. S. K. Manikandan and S. Qvarfort, Optimal quantum parametric feedback cooling, Physical Review A 107, 023516 (2023).
  8. S. Lloyd, Coherent quantum feedback, Phys. Rev. A 62, 022108 (2000).
  9. A. Harwood, M. Brunelli, and A. Serafini, Cavity optomechanics assisted by optical coherent feedback, Phys. Rev. A 103, 023509 (2021).
  10. S. Huang and A. Chen, Cooling of a Mechanical Oscillator and Normal Mode Splitting in Optomechanical Systems with Coherent Feedback, Appl. Sci. 9, 3402 (2019).
  11. J. Guo and S. Gröblacher, Coherent feedback in optomechanical systems in the sideband-unresolved regime, Quantum 6, 848 (2022).
  12. O. Černotík, A. Dantan, and C. Genes, Cavity quantum electrodynamics with frequency-dependent reflectors, Phys. Rev. Lett. 122, 243601 (2019a).
  13. O. Černotík, C. Genes, and A. Dantan, Interference effects in hybrid cavity optomechanics, Quantum Sci. Technol. 4, 024002 (2019b).
  14. P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107, 063601 (2011).
  15. A. Nunnenkamp, K. Børkje, and S. M. Girvin, Single-photon optomechanics, Phys. Rev. Lett. 107, 063602 (2011).
  16. J. L. Wise, C. Dutreix, and F. Pistolesi, Nonclassical mechanical states in cavity optomechanics in the single-photon strong-coupling regime, Phys. Rev. A 109, L051501 (2024).
  17. In order to access well-defined steady-state mean values, we examine the stability of the system by using the Routh-Hurwitz criterion [62]. We indicate the unstable regime by white areas in all density plots of this paper.
  18. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys. 82, 2257 (2010).
  19. A. Xuereb, P. Horak, and T. Freegarde, Atom cooling using the dipole force of a single retroflected laser beam, Phys. Rev. A 80, 013836 (2009).
  20. T. Tufarelli, F. Ciccarello, and M. S. Kim, Dynamics of spontaneous emission in a single-end photonic waveguide, Phys. Rev. A 87, 013820 (2013).
  21. E. X. DeJesus and C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A 35, 5288 (1987).
  22. V. Giovannetti and D. Vitali, Phase-noise measurement in a cavity with a movable mirror undergoing quantum brownian motion, Phys. Rev. A 63, 023812 (2001).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.