Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AltChart: Enhancing VLM-based Chart Summarization Through Multi-Pretext Tasks (2405.13580v1)

Published 22 May 2024 in cs.CV and cs.HC

Abstract: Chart summarization is a crucial task for blind and visually impaired individuals as it is their primary means of accessing and interpreting graphical data. Crafting high-quality descriptions is challenging because it requires precise communication of essential details within the chart without vision perception. Many chart analysis methods, however, produce brief, unstructured responses that may contain significant hallucinations, affecting their reliability for blind people. To address these challenges, this work presents three key contributions: (1) We introduce the AltChart dataset, comprising 10,000 real chart images, each paired with a comprehensive summary that features long-context, and semantically rich annotations. (2) We propose a new method for pretraining Vision-LLMs (VLMs) to learn fine-grained chart representations through training with multiple pretext tasks, yielding a performance gain with ${\sim}2.5\%$. (3) We conduct extensive evaluations of four leading chart summarization models, analyzing how accessible their descriptions are. Our dataset and codes are publicly available on our project page: https://github.com/moured/AltChart.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com