MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation (2405.13570v3)
Abstract: The recent advancement of generative foundational models has ushered in a new era of image generation in the realm of natural images, revolutionizing art design, entertainment, environment simulation, and beyond. Despite producing high-quality samples, existing methods are constrained to generating images of scenes at a limited scale. In this paper, we present MetaEarth, a generative foundation model that breaks the barrier by scaling image generation to a global level, exploring the creation of worldwide, multi-resolution, unbounded, and virtually limitless remote sensing images. In MetaEarth, we propose a resolution-guided self-cascading generative framework, which enables the generating of images at any region with a wide range of geographical resolutions. To achieve unbounded and arbitrary-sized image generation, we design a novel noise sampling strategy for denoising diffusion models by analyzing the generation conditions and initial noise. To train MetaEarth, we construct a large dataset comprising multi-resolution optical remote sensing images with geographical information. Experiments have demonstrated the powerful capabilities of our method in generating global-scale images. Additionally, the MetaEarth serves as a data engine that can provide high-quality and rich training data for downstream tasks. Our model opens up new possibilities for constructing generative world models by simulating Earth visuals from an innovative overhead perspective.
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
- A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
- C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans et al., “Photorealistic text-to-image diffusion models with deep language understanding,” Advances in neural information processing systems, vol. 35, pp. 36 479–36 494, 2022.
- W. Harvey, S. Naderiparizi, V. Masrani, C. Weilbach, and F. Wood, “Flexible diffusion modeling of long videos,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 953–27 965, 2022.
- T. Höppe, A. Mehrjou, S. Bauer, D. Nielsen, and A. Dittadi, “Diffusion models for video prediction and infilling,” arXiv preprint arXiv:2206.07696, 2022.
- C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi, “Palette: Image-to-image diffusion models,” in ACM SIGGRAPH 2022 conference proceedings, 2022, pp. 1–10.
- M. Zhao, F. Bao, C. Li, and J. Zhu, “Egsde: Unpaired image-to-image translation via energy-guided stochastic differential equations,” Advances in Neural Information Processing Systems, vol. 35, pp. 3609–3623, 2022.
- Z. Wan, B. Zhang, D. Chen, P. Zhang, F. Wen, and J. Liao, “Old photo restoration via deep latent space translation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 2071–2087, 2022.
- O. Avrahami, D. Lischinski, and O. Fried, “Blended diffusion for text-driven editing of natural images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18 208–18 218.
- C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon, “Sdedit: Guided image synthesis and editing with stochastic differential equations,” arXiv preprint arXiv:2108.01073, 2021.
- R. Yi, Y.-J. Liu, Y.-K. Lai, and P. L. Rosin, “Quality metric guided portrait line drawing generation from unpaired training data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 905–918, 2023.
- M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A comprehensive survey of image augmentation techniques for deep learning,” Pattern Recognition, vol. 137, p. 109347, 2023.
- S. Azizi, S. Kornblith, C. Saharia, M. Norouzi, and D. J. Fleet, “Synthetic data from diffusion models improves imagenet classification,” arXiv preprint arXiv:2304.08466, 2023.
- W. Wu, Y. Zhao, H. Chen, Y. Gu, R. Zhao, Y. He, H. Zhou, M. Z. Shou, and C. Shen, “Datasetdm: Synthesizing data with perception annotations using diffusion models,” Advances in Neural Information Processing Systems, vol. 36, pp. 54 683–54 695, 2023.
- Z. Zhu, X. Wang, W. Zhao, C. Min, N. Deng, M. Dou, Y. Wang, B. Shi, K. Wang, C. Zhang et al., “Is sora a world simulator? a comprehensive survey on general world models and beyond,” arXiv preprint arXiv:2405.03520, 2024.
- A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall, J. Shotton, and G. Corrado, “Gaia-1: A generative world model for autonomous driving,” arXiv preprint arXiv:2309.17080, 2023.
- J. Bruce, M. Dennis, A. Edwards, J. Parker-Holder, Y. Shi, E. Hughes, M. Lai, A. Mavalankar, R. Steigerwald, C. Apps et al., “Genie: Generative interactive environments,” arXiv preprint arXiv:2402.15391, 2024.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
- T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 4401–4410.
- P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution image synthesis,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 12 873–12 883.
- D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
- A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” Advances in neural information processing systems, vol. 30, 2017.
- D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in International conference on machine learning. PMLR, 2015, pp. 1530–1538.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
- A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International conference on machine learning. PMLR, 2021, pp. 8162–8171.
- F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
- J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International conference on machine learning. PMLR, 2015, pp. 2256–2265.
- J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
- J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded diffusion models for high fidelity image generation,” Journal of Machine Learning Research, vol. 23, no. 47, pp. 1–33, 2022.
- C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 4, pp. 4713–4726, 2022.
- L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image diffusion models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3836–3847.
- R. Ou, H. Yan, M. Wu, and C. Zhang, “A method of efficient synthesizing post-disaster remote sensing image with diffusion model and llm,” in 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2023, pp. 1549–1555.
- S. Khanna, P. Liu, L. Zhou, C. Meng, R. Rombach, M. Burke, D. Lobell, and S. Ermon, “Diffusionsat: A generative foundation model for satellite imagery,” arXiv preprint arXiv:2312.03606, 2023.
- D. Tang, X. Cao, X. Hou, Z. Jiang, and D. Meng, “Crs-diff: Controllable generative remote sensing foundation model,” arXiv preprint arXiv:2403.11614, 2024.
- A. Sebaq and M. ElHelw, “Rsdiff: Remote sensing image generation from text using diffusion model,” arXiv preprint arXiv:2309.02455, 2023.
- M. Espinosa and E. J. Crowley, “Generate your own scotland: Satellite image generation conditioned on maps,” arXiv preprint arXiv:2308.16648, 2023.
- Z. Yuan, C. Hao, R. Zhou, J. Chen, M. Yu, W. Zhang, H. Wang, and X. Sun, “Efficient and controllable remote sensing fake sample generation based on diffusion model,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
- O. Baghirli, H. Askarov, I. Ibrahimli, I. Bakhishov, and N. Nabiyev, “Satdm: Synthesizing realistic satellite image with semantic layout conditioning using diffusion models,” arXiv preprint arXiv:2309.16812, 2023.
- C. Zhao, Y. Ogawa, S. Chen, Z. Yang, and Y. Sekimoto, “Label freedom: Stable diffusion for remote sensing image semantic segmentation data generation,” in 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023, pp. 1022–1030.
- H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen, “Srdiff: Single image super-resolution with diffusion probabilistic models,” Neurocomputing, vol. 479, pp. 47–59, 2022.
- X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “Esrgan: Enhanced super-resolution generative adversarial networks,” in Proceedings of the European conference on computer vision (ECCV) workshops, 2018, pp. 0–0.
- X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training real-world blind super-resolution with pure synthetic data,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 1905–1914.
- J. Choi, J. Lee, C. Shin, S. Kim, H. Kim, and S. Yoon, “Perception prioritized training of diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 472–11 481.
- M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in neural information processing systems, vol. 30, 2017.
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.
- K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.