Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds on the approximation error for deep neural networks applied to dispersive models: Nonlinear waves (2405.13566v1)

Published 22 May 2024 in math.NA, cs.NA, math.AP, and math.PR

Abstract: We present a comprehensive framework for deriving rigorous and efficient bounds on the approximation error of deep neural networks in PDE models characterized by branching mechanisms, such as waves, Schr\"odinger equations, and other dispersive models. This framework utilizes the probabilistic setting established by Henry-Labord`ere and Touzi. We illustrate this approach by providing rigorous bounds on the approximation error for both linear and nonlinear waves in physical dimensions $d=1,2,3$, and analyze their respective computational costs starting from time zero. We investigate two key scenarios: one involving a linear perturbative source term, and another focusing on pure nonlinear internal interactions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.