Specular Polynomials (2405.13409v1)
Abstract: Finding valid light paths that involve specular vertices in Monte Carlo rendering requires solving many non-linear, transcendental equations in high-dimensional space. Existing approaches heavily rely on Newton iterations in path space, which are limited to obtaining at most a single solution each time and easily diverge when initialized with improper seeds. We propose specular polynomials, a Newton iteration-free methodology for finding a complete set of admissible specular paths connecting two arbitrary endpoints in a scene. The core is a reformulation of specular constraints into polynomial systems, which makes it possible to reduce the task to a univariate root-finding problem. We first derive bivariate systems utilizing rational coordinate mapping between the coordinates of consecutive vertices. Subsequently, we adopt the hidden variable resultant method for variable elimination, converting the problem into finding zeros of the determinant of univariate matrix polynomials. This can be effectively solved through Laplacian expansion for one bounce and a bisection solver for more bounces. Our solution is generic, completely deterministic, accurate for the case of one bounce, and GPU-friendly. We develop efficient CPU and GPU implementations and apply them to challenging glints and caustic rendering. Experiments on various scenarios demonstrate the superiority of specular polynomial-based solutions compared to Newton iteration-based counterparts.
- Tomas Akenine-Möller and Ben Trumbore. 1997. Fast, Minimum Storage Ray-Triangle Intersection. J. Graphics, GPU, & Game Tools 2 (1997), 21–28. https://api.semanticscholar.org/CorpusID:25931248
- Bruno Buchberger. 1992. Gröbner Bases: An Introduction. In Automata, Languages and Programming, G. Goos, J. Hartmanis, and W. Kuich (Eds.), Vol. 623. Springer Berlin Heidelberg, Berlin, Heidelberg, 378–379. https://doi.org/10.1007/3-540-55719-9_89
- Étienne Bézout. 1779. Théorie Générale des Équations Algébriques. Ph. D. Dissertation. Pierres, Paris.
- Min Chen and James Arvo. 2000. Theory and application of specular path perturbation. ACM Trans. Graph. 19, 4 (oct 2000), 246–278. https://doi.org/10.1145/380666.380670
- Fast Computation of the Bezout and Dixon Resultant Matrices. Journal of Symbolic Computation 33, 1 (Jan. 2002), 13–29. https://doi.org/10.1006/jsco.2001.0462
- Per H. Christensen and Wojciech Jarosz. 2016. The Path to Path-Traced Movies. Found. Trends. Comput. Graph. Vis. 10, 2 (oct 2016), 103–175.
- George E. Collins and Rüdiger Loos. 1976. Polynomial real root isolation by differentiation. In Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation (Yorktown Heights, New York, USA) (SYMSAC ’76). Association for Computing Machinery, New York, NY, USA, 15–25. https://doi.org/10.1145/800205.806319
- A. L. Dixon. 1908. The Eliminant of Three Quantics in two Independent Variables: (Second Paper.). Proceedings of The London Mathematical Society (1908), 473–492.
- Path Guiding Using Spatio-Directional Mixture Models. Computer Graphics Forum 41, 1 (Feb. 2022), 172–189. https://doi.org/10.1111/cgf.14428
- Ioannis Z. Emiris and Victor Y. Pan. 2005. Improved Algorithms for Computing Determinants and Resultants. Journal of Complexity 21, 1 (Feb. 2005), 43–71. https://doi.org/10.1016/j.jco.2004.03.003
- Manifold Path Guiding for Importance Sampling Specular Chains. ACM Trans. Graph. 42, 6, Article 257 (Dec 2023), 14 pages.
- Path Tracing in Production. In ACM SIGGRAPH 2018 Courses (Vancouver, British Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, Article 15, 79 pages.
- Can You See the Heat? A Null-Scattering Approach for Refractive Volume Rendering. In ACM SIGGRAPH 2023 Talks. ACM, Los Angeles CA USA, 1–2. https://doi.org/10.1145/3587421.3595427
- Georg Glaeser and Hans-Peter Schröcker. 2000. Reflections on refractions. Journal for Geometry and Graphics 4 (01 2000).
- Gene H. Golub and Charles F. Van Loan. 2012. Matrix Computations (4th ed.). Johns Hopkins University Press.
- On the Complexity of the Multivariate Resultant. Journal of Complexity 29, 2 (April 2013), 142–157. https://doi.org/10.1016/j.jco.2012.10.001 arXiv:1210.1451 [cs]
- Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic Progressive Photon Mapping. ACM Trans. Graph. 28, 4, Article 141 (2009), 8 pages. https://doi.org/10.1145/1661412.1618487
- Progressive photon mapping. ACM Trans. Graph. 27 (2008), 130.
- Manifold Next Event Estimation. Computer Graphics Forum 34, 4 (2015), 87–97. https://doi.org/10.1111/cgf.12681
- Paul S. Heckbert. 1990. Adaptive Radiosity Textures for Bidirectional Ray Tracing. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques (Dallas, TX, USA) (SIGGRAPH ’90). Association for Computing Machinery, New York, NY, USA, 145–154. https://doi.org/10.1145/97879.97895
- Marching Triangles: Range Image Fusion for Complex Object Modelling. Proceedings of 3rd IEEE International Conference on Image Processing 1 (1996), 381–384. https://doi.org/10.1109/ICIP.1996.560840
- Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
- Discrete Stochastic Microfacet Models. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014), 115:1–115:10. https://doi.org/10.1145/2601097.2601186
- Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Trans. Graph. 31, 4, Article 58 (jul 2012), 13 pages. https://doi.org/10.1145/2185520.2185554
- Johannes Jendersie and Thorsten Grosch. 2019. Microfacet Model Regularization for Robust Light Transport. Computer Graphics Forum 38, 4 (2019), 39–47. https://doi.org/10.1111/cgf.13768
- Henrik Wann Jensen and Niels Jørgen Christensen. 1995. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph. 19 (1995), 215–224.
- Jia-Wun Jhang and Chun-Fa Chang. 2022. Specular Manifold Bisection Sampling for Caustics Rendering. Computer Graphics Forum (2022).
- James T. Kajiya. 1982. Ray Tracing Parametric Patches. In Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’82). Association for Computing Machinery, New York, NY, USA, 245–254. https://doi.org/10.1145/800064.801287
- James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (aug 1986), 143–150. https://doi.org/10.1145/15886.15902
- Anton S. Kaplanyan and Carsten Dachsbacher. 2013. Path Space Regularization for Holistic and Robust Light Transport. Computer Graphics Forum 32, 2pt1 (2013), 63–72. https://doi.org/10.1111/cgf.12026
- The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Trans. Graph. 33, 4, Article 102 (jul 2014), 13 pages. https://doi.org/10.1145/2601097.2601108
- Algebraic and Geometric Reasoning Using Dixon Resultants. In Proceedings of the International Symposium on Symbolic and Algebraic Computation - ISSAC ’94. ACM Press, Oxford, United Kingdom, 99–107. https://doi.org/10.1145/190347.190372
- The Path Tracing Revolution in the Movie Industry. In ACM SIGGRAPH 2015 Courses (Los Angeles, California) (SIGGRAPH ’15). Association for Computing Machinery, New York, NY, USA, Article 24, 7 pages.
- Slope-Space Integrals for Specular next Event Estimation. ACM Trans. Graph. 39, 6, Article 239 (nov 2020), 13 pages. https://doi.org/10.1145/3414685.3417811
- Unbiased and consistent rendering using biased estimators. ACM Trans. Graph. 41, 4, Article 48 (jul 2022), 13 pages. https://doi.org/10.1145/3528223.3530160
- Don P. Mitchell and Pat Hanrahan. 1992. Illumination from curved reflectors. Proceedings of the 19th annual conference on Computer graphics and interactive techniques (1992).
- Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum 36 (07 2017), 91–100. https://doi.org/10.1111/cgf.13227
- Computing the Common Zeros of Two Bivariate Functions via Bézout Resultants. Numer. Math. 129, 1 (Jan. 2015), 181–209. https://doi.org/10.1007/s00211-014-0635-z
- Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach. SIAM J. Matrix Anal. Appl. 38, 1 (Jan. 2017), 1–29. https://doi.org/10.1137/15M1013286
- Vanni Noferini and Alex Townsend. 2016. Numerical Instability of Resultant Methods for Multidimensional Rootfinding. SIAM J. Numer. Anal. 54, 2 (Jan. 2016), 719–743. https://doi.org/10.1137/15M1022513
- Geometry-Aware Metropolis Light Transport. ACM Trans. Graph. 37, 6, Article 278 (dec 2018), 11 pages. https://doi.org/10.1145/3272127.3275106
- Path Tracing Estimators for Refractive Radiative Transfer. ACM Transactions on Graphics 39, 6 (Dec. 2020), 1–15. https://doi.org/10.1145/3414685.3417793
- Complexity of Constructing Dixon Resultant Matrix. International Journal of Computer Mathematics 94, 10 (Oct. 2017), 2074–2088. https://doi.org/10.1080/00207160.2016.1276572
- Variance-Aware Path Guiding. ACM Trans. Graph. 39, 4, Article 151 (aug 2020), 12 pages. https://doi.org/10.1145/3386569.3392441
- Focal Path Guiding for Light Transport Simulation. In ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA) (SIGGRAPH ’23). Association for Computing Machinery, New York, NY, USA, Article 30, 10 pages. https://doi.org/10.1145/3588432.3591543
- Selective Guided Sampling with Complete Light Transport Paths. ACM Trans. Graph. 37, 6, Article 223 (dec 2018), 14 pages. https://doi.org/10.1145/3272127.3275030
- Robust Fitting of Parallax-Aware Mixtures for Path Guiding. ACM Trans. Graph. 39, 4, Article 147 (aug 2020), 15 pages. https://doi.org/10.1145/3386569.3392421
- AmirHosein Sadeghimanesh and Matthew England. 2022. Resultant Tools for Parametric Polynomial Systems with Application to Population Models. arXiv:2201.13189 [cs, q-bio]
- Caustic Connection Strategies for Bidirectional Path Tracing.
- Peter F. Stiller. 2004. An Introduction to the Theory of Resultants. https://api.semanticscholar.org/CorpusID:31644195
- James Joseph Sylvester. 1853. On a Theory of the Syzygetic Relations of Two Rational Integral Functions, Comprising an Application to the Theory of Sturm’s Functions, and That of the Greatest Algebraical Common Measure. Philosophical Transactions of the Royal Society of London 143 (1853), 407–548. https://doi.org/10.1098/rstl.1853.0018
- Eric Veach and Leonidas Guibas. 1995. Bidirectional Estimators for Light Transport. In Photorealistic Rendering Techniques, Georgios Sakas, Stefan Müller, and Peter Shirley (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 145–167.
- Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., USA, 65–76. https://doi.org/10.1145/258734.258775
- Path Guiding in Production. , Article 18 (2019), 77 pages. https://doi.org/10.1145/3305366.3328091
- Robust Light Transport Simulation via Metropolised Bidirectional Estimators. ACM Trans. Graph. 35, 6, Article 245 (dec 2016), 12 pages. https://doi.org/10.1145/2980179.2982411
- Microfacet Models for Refraction through Rough Surfaces. In Rendering Techniques.
- Single Scattering in Refractive Media with Triangle Mesh Boundaries. ACM Trans. Graph. 28, 3, Article 92 (jul 2009), 8 pages. https://doi.org/10.1145/1531326.1531398
- Path Cuts: Efficient Rendering of Pure Specular Light Transport. ACM Trans. Graph. 39, 6, Article 238 (nov 2020), 12 pages. https://doi.org/10.1145/3414685.3417792
- Optimised Path Space Regularisation. Computer Graphics Forum 40, 4 (2021), 139–151. https://doi.org/10.1111/cgf.14347
- Efficient Caustics Rendering via Spatial and Temporal Path Reuse. In Computer Graphics Forum. Wiley Online Library, e14975.
- Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33, 4, Article 116 (jul 2014), 9 pages. https://doi.org/10.1145/2601097.2601155
- Neural Path Sampling for Rendering Pure Specular Light Transport. Computer Graphics Forum (2023). https://api.semanticscholar.org/CorpusID:266443113
- Cem Yuksel. 2022. High-Performance Polynomial Root Finding for Graphics. Proceedings of the ACM on Computer Graphics and Interactive Techniques 5, 3 (July 2022), 1–15. https://doi.org/10.1145/3543865
- Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints. ACM Trans. Graph. 39, 4, Article 149 (jul 2020), 15 pages. https://doi.org/10.1145/3386569.3392408
- Recent advances in glinty appearance rendering. Computational Visual Media 8 (06 2022), 535–552. https://doi.org/10.1007/s41095-022-0280-x