2000 character limit reached
Self-dual 2-quasi Negacyclic Codes over Finite Fields (2405.13320v1)
Published 22 May 2024 in cs.IT and math.IT
Abstract: In this paper, we investigate the existence and asymptotic property of self-dual $2$-quasi negacyclic codes of length $2n$ over a finite field of cardinality $q$. When $n$ is odd, we show that the $q$-ary self-dual $2$-quasi negacyclic codes exist if and only if $q\,{\not\equiv}-!1~({\rm mod}~4)$. When $n$ is even, we prove that the $q$-ary self-dual $2$-quasi negacyclic codes always exist. By using the technique introduced in this paper, we prove that $q$-ary self-dual $2$-quasi negacyclic codes are asymptotically good.
- A. Alahmadi, F. Özdemir, P. Solé, “On self-dual double circulant codes”, Des. Codes Cryptogr., vol. 86, pp. 1257-1265, 2018.
- A. Alahmadi, C. Güneri, B. Özkaya, H. Shoaib, P. Solé, “On self-dual double negacirculant codes”, Discrete Applied Mathematics, vol.222, pp205-212, 2017.
- C. L. Chen, W. W. Peterson, E. J. Weldon, “Some results on quasi-cyclic codes”, Information and Control, vol. 15, pp. 407-423, 1969.
- V. Chepyzhov, “New lower bounds for minimum distance of linear quasi-cyclic and almost linear quasi-cyclic codes”, Problem Peredachi Informatsii, vol. 28, pp. 33-44, 1992.
- H. Q. Dinh, “Repeated-root constacyclic codes of length 2ps”, Finite Fields Appl., vol. 18, pp. 133-143, 2012.
- H. Q. Dinh, S. R. Lopez-Permouth, “Cyclic and negacyclic codes over finite chain rings”, IEEE Trans. Inform. Theory, vol. 50(8), pp. 1728-1744, 2004.
- Yun Fan, Hualu Liu, “Double constacyclic codes over two finite commutative chain rings”, IEEE Trans. Inform. Theory, vol. 69, no. 3, pp. 1521-1530, 2023.
- Yun Fan, Liren Lin, “Thresholds of random quasi-abelian codes”, IEEE Trans. Inform. Theory, vol. 61, no. 1, pp. 82-90, 2015.
- N. E. Gilbert, “A comparison of signalling alphabets”, Bell Sys. Tech. Journal, vol. 31, pp. 504-522, 1952.
- T. Kasami, “A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2”, IEEE Trans. Inform. Theory, vol. 20, pp. 679, 1974.
- Liren Lin, “Random quasi-abelian codes and self-orthogonal negacyclic codes (in Chinese)”, Ph.D. dissertation, Central China Normal Univ., Wuhan, China, 2014.
- Liren Lin, Yun Fan, “Self-dual 2-quasi Abelian Codes”, IEEE Trans. Inform. Theory, vol. 68, pp. 6417-6425, 2022.
- S. Ling, P. Solé, “On the algebraic structure of quasi-cyclic codes I: finite fields”, IEEE Trans. Inform. Theory, vol. 47, pp. 2751-2760, 2001.
- S. Ling, P. Solé, “On the algebraic structure of quasi-cyclic codes II: Chain rings”, Des. Codes Cryptogr. vol.30, no.1, pp. 113-130, 2003.
- C. Martínez-Pérez, W. Willems, “Is the class of cyclic codes asymptotically good?” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 696-700, 2006.
- C. Martínez-Pérez, W. Willems, “Self-dual double-even 2222-quasi-cyclic transitive codes are asymptotically good”, IEEE Trans. Inform. Theory, vol. 53, pp. 4302-4308, 2007.
- Minjia Shi, Liqin Qian, P. Solé, “On self-dual negacirculant codes of index two and four”, Des. Codes Cryptogr., vol.86, no.11, pp. 2485-2494, 2018.
- R. R. Varshamov, “Estimate of the number of signals in error-correcting codes (in Russian)”, Dokl. Acad. Nauk, vol.117, pp.739-741, 1957.