Assessing Political Bias in Large Language Models (2405.13041v3)
Abstract: The assessment of bias within LLMs has emerged as a critical concern in the contemporary discourse surrounding AI in the context of their potential impact on societal dynamics. Recognizing and considering political bias within LLM applications is especially important when closing in on the tipping point toward performative prediction. Then, being educated about potential effects and the societal behavior LLMs can drive at scale due to their interplay with human operators. In this way, the upcoming elections of the European Parliament will not remain unaffected by LLMs. We evaluate the political bias of the currently most popular open-source LLMs (instruct or assistant models) concerning political issues within the European Union (EU) from a German voter's perspective. To do so, we use the "Wahl-O-Mat," a voting advice application used in Germany. From the voting advice of the "Wahl-O-Mat" we quantize the degree of alignment of LLMs with German political parties. We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral, particularly when prompted in English. The central finding is that LLMs are similarly biased, with low variances in the alignment concerning a specific party. Our findings underline the importance of rigorously assessing and making bias transparent in LLMs to safeguard the integrity and trustworthiness of applications that employ the capabilities of performative prediction and the invisible hand of machine learning prediction and language generation.
- M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh, N. Akhtar, J. Wu, S. Mirjalili et al., “A survey on large language models: Applications, challenges, limitations, and practical usage,” Authorea Preprints, 2023.
- D. Myers, R. Mohawesh, V. I. Chellaboina, A. L. Sathvik, P. Venkatesh, Y.-H. Ho, H. Henshaw, M. Alhawawreh, D. Berdik, and Y. Jararweh, “Foundation and large language models: fundamentals, challenges, opportunities, and social impacts,” Cluster Computing, vol. 27, no. 1, pp. 1–26, 2024.
- R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of foundation models,” arXiv preprint arXiv:2108.07258, 2021.
- J. Perdomo, T. Zrnic, C. Mendler-Dünner, and M. Hardt, “Performative prediction,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 7599–7609. [Online]. Available: https://proceedings.mlr.press/v119/perdomo20a.html
- M. Hardt, M. Jagadeesan, and C. Mendler-Dünner, “Performative power,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 22 969–22 981. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/90e73f3cf1a6c84c723a2e8b7fb2b2c1-Paper-Conference.pdf
- Bundeszentrale für politische Bildung. Die geschichte des wahl-o-mat. [Online]. Available: https://www.bpb.de/themen/wahl-o-mat/326661/die-geschichte-des-wahl-o-mat/
- L. Osman and D. Sewell. Report - hugging face. [Online]. Available: https://research.contrary.com/reports/hugging-face
- T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https://www.aclweb.org/anthology/2020.emnlp-demos.6
- A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al., “Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
- Meta. Introducing meta llama 3: The most capable openly available llm to date. [Online]. Available: https://ai.meta.com/blog/meta-llama-3/
- S. Stumpf, “Lexik und argumentation im wahl-o-mat zur bundes-tagswahl 2021,” Wahlkampfsprache 2021, p. 376, 2021.
- T. F. Heston and C. Khun, “Prompt engineering in medical education,” International Medical Education, vol. 2, no. 3, pp. 198–205, 2023.
- Die Bundeswahlleiterin. Europawahl 2019. [Online]. Available: https://www.bundeswahlleiterin.de/europawahlen/2019/ergebnisse/bund-99.html
- Luca Rettenberger (3 papers)
- Markus Reischl (16 papers)
- Mark Schutera (5 papers)