Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dieudonné theory via cohomology classifying stacks II (2405.12967v2)

Published 21 May 2024 in math.AG and math.NT

Abstract: In this paper, we apply stack theoretic ideas to the classification problem in Dieudonn\'e theory. First, we use crystalline cohomology of classifying stacks to directly reconstruct the classical Dieudonn\'e module of a finite, $p$-power rank, commutative group scheme $G$ over a perfect field $k$ of characteristic $p>0$. As a consequence, we give a new, much shorter proof of the isomorphism $\sigma* M(G) \simeq \mathrm{Ext}1 (G, \mathcal{O}{\mathrm{crys}})$ due to Berthelot--Breen--Messing using stacky methods combined with the theory of de Rham--Witt complexes. Additionally, we show that finite locally free commutative group schemes of $p$-power rank over a quasisyntomic base can be classified in terms of ``prismatic Dieudonn\'e $F$-gauges", which we introduce by making constructions using (higher) classifying stacks. The latter generalizes the result of Ansch\"utz and Le Bras on classification of $p$-divisible groups, which we also reprove using our approach. Along the way, we prove a description of cohomology with coefficients in group schemes, compatibility with Cartier duality, and reconstruction of Galois representations in terms of our prismatic Dieudonn\'e $F$-gauges.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com