Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Mode Multiplexing for Fiber-Coupled IM/DD Optical Wireless Links with Misalignment (2405.12667v2)

Published 21 May 2024 in eess.SY and cs.SY

Abstract: Optical wireless communication (OWC) emerges as a pivotal solution for achieving terabit-level aggregate throughput in next-generation wireless networks. With the mature high-speed transceivers and advanced (de)multiplexing techniques designed for fiber optics, fiber-coupled OWC can be seamlessly integrated into existing ultra-high-speed networks such as data centres. In particular, OWC leveraging spatial mode multiplexing (SMM) and few-mode fiber (FMF) coupling can significantly increase capacity, though misalignment may reduce performance. This paper presents a thorough investigation into the SMM-enabled FMF coupling OWC systems affected by link misalignment, specifically focusing on systems with intensity modulation with direct detection (IM/DD) receivers. A theoretical analysis is conducted to assess the fiber coupling efficiency of the considered system in the presence of both pointing error and angle of arrival (AOA) fluctuations caused by random device vibrations. Our model elucidates the dependence of coupling efficiency to the order of the incident modes, highlighting the critical role of beam properties in system performance. To mitigate the intermodal crosstalk arising from link misalignment, we employ zero-forcing beamforming (ZFBF) to enhance the overall aggregated data rate. Through extensive numerical results, we identify optimal system configurations encompassing aperture design and mode selection, leading to a capacity boost exceeding 200%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. K. Wang, T. Song, Y. Wang, C. Fang, J. He, A. Nirmalathas, C. Lim, E. Wong, and S. Kandeepan, “Evolution of short-range optical wireless communications,” Journal of Lightwave Technology, vol. 41, no. 4, pp. 1019–1040, 2023.
  2. X. Zhang, G. Klevering, X. Lei, Y. Hu, L. Xiao, and G.-h. Tu, “The security in optical wireless communication: A survey,” ACM Computing Surveys, 2023.
  3. Y. Hong, F. Feng, K. R. H. Bottrill, N. Taengnoi, R. Singh, G. Faulkner, D. C. O’Brien, and P. Petropoulos, “Demonstration of >1tbit/s wdm owc with wavelength-transparent beam tracking-and-steering capability,” Opt. Express, vol. 29, pp. 33694–33702, Oct 2021.
  4. A. Schreier, O. Alia, R. Wang, R. Singh, G. Faulkner, G. Kanellos, R. Nejabati, D. Simeonidou, J. Rarity, and D. O’Brien, “Coexistence of quantum and 1.6 tbit/s classical data over fibre-wireless-fibre terminals,” Journal of Lightwave Technology, vol. 41, no. 16, pp. 5226–5232, 2023.
  5. R. Singh, F. Feng, Y. Hong, G. Faulkner, R. Deshmukh, G. Vercasson, O. Bouchet, P. Petropoulos, and D. O’Brien, “Design and characterisation of terabit/s capable compact localisation and beam-steering terminals for fiber-wireless-fiber links,” Journal of Lightwave Technology, vol. 38, no. 24, pp. 6817–6826, 2020.
  6. S. Zhang, X. Xue, F. Yan, B. Pan, X. Guo, K. Mekonnen, E. Tangdiongga, and N. Calabretta, “Feasibility study of optical wireless technology in data center network,” IEEE Photonics Technology Letters, vol. 33, no. 15, pp. 773–776, 2021.
  7. S. Zhang, R. Kraemer, B. Pan, X. Xue, K. Prifti, F. Yan, X. Guo, E. Tangdiongga, and N. Calabretta, “Experimental assessment of a novel optical wireless data center network architecture,” in 2020 European Conference on Optical Communications (ECOC), pp. 1–4, 2020.
  8. A. S. Hamza, J. S. Deogun, and D. R. Alexander, “Wireless communication in data centers: A survey,” IEEE communications surveys & tutorials, vol. 18, no. 3, pp. 1572–1595, 2016.
  9. K. Pang, H. Song, X. Su, K. Zou, Z. Zhao, H. Song, A. Almaiman, R. Zhang, C. Liu, N. Hu, S. Zach, N. Cohen, B. Lynn, A. F. Molisch, R. W. Boyd, M. Tur, and A. E. Willner, “Experimental mitigation of the effects of the limited size aperture or misalignment by singular-value-decomposition-based beam orthogonalization in a free-space optical link using laguerre–gaussian modes,” Opt. Lett., vol. 45, pp. 6310–6313, Nov 2020.
  10. N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Transactions on Reliability, vol. 60, no. 2, pp. 479–492, 2011.
  11. N. K. Fontaine, J. Carpenter, S. Gross, S. Leon-Saval, Y. Jung, D. J. Richardson, and R. Amezcua-Correa, “Photonic lanterns, 3-d waveguides, multiplane light conversion, and other components that enable space-division multiplexing,” Proceedings of the IEEE, vol. 110, no. 11, pp. 1821–1834, 2022.
  12. W. Guo, Y. Li, J. Chen, T. Jin, S. Jiao, J. Wu, J. Qiu, and H. Guo, “Satellite-to-ground optical downlink model using mode mismatching multi-mode photonic lanterns,” Opt. Express, vol. 31, pp. 35041–35053, Oct 2023.
  13. D. G. MacLachlan, R. J. Harris, D. Choudhury, R. D. Simmonds, P. S. Salter, M. J. Booth, J. R. Allington-Smith, and R. R. Thomson, “Development of integrated mode reformatting components for diffraction-limited spectroscopy,” Opt. Lett., vol. 41, pp. 76–79, Jan 2016.
  14. X. Ji, J. Liu, J. He, R. N. Wang, Z. Qiu, J. Riemensberger, and T. J. Kippenberg, “Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits,” Commun. Phys., vol. 5, no. 1, p. 84, 2022.
  15. F. Wang, C. Qiu, Y. Chen, and G. Hu, “Performance of improved mode diversity reception for free-space optical communication under atmospheric turbulence,” J. Opt. Commun. Netw., vol. 14, pp. 725–732, Sep 2022.
  16. X. Fan, D. Wang, J. Cheng, J. Yang, and J. Ma, “Few-mode fiber coupling efficiency for free-space optical communication,” Journal of Lightwave Technology, vol. 39, no. 6, pp. 1823–1829, 2021.
  17. N. Zhao, X. Li, G. Li, and J. M. Kahn, “Capacity limits of spatially multiplexed free-space communication,” Nature photonics, vol. 9, no. 12, pp. 822–826, 2015.
  18. S. Huang, G. R. Mehrpoor, and M. Safari, “Spatial-mode diversity and multiplexing for fso communication with direct detection,” IEEE Transactions on Communications, vol. 66, no. 5, pp. 2079–2092, 2018.
  19. A. E. Willner, H. Song, K. Zou, H. Zhou, and X. Su, “Orbital angular momentum beams for high-capacity communications,” J. Lightwave Technol., vol. 41, pp. 1918–1933, Apr 2023.
  20. G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, A. F. Molisch, and A. E. Willner, “Performance metrics and design considerations for a free-space optical orbital-angular-momentum multiplexed communication link,” Optica, vol. 2, pp. 357–365, Apr 2015.
  21. S. Arnon, “Effects of atmospheric turbulence and building sway on optical wireless-communication systems,” Opt. Lett., vol. 28, pp. 129–131, Jan 2003.
  22. M. Curran, K. Zheng, H. Gupta, and J. Longtin, “Handling rack vibrations in fso-based data center architectures,” in 2018 International Conference on Optical Network Design and Modeling (ONDM), pp. 47–52, IEEE, 2018.
  23. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” Journal of Lightwave Technology, vol. 25, no. 7, pp. 1702–1710, 2007.
  24. S. Huang and M. Safari, “Free-space optical communication impaired by angular fluctuations,” IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7475–7487, 2017.
  25. I. Gasulla and J. M. Kahn, “Performance of direct-detection mode-group-division multiplexing using fused fiber couplers,” Journal of Lightwave Technology, vol. 33, no. 9, pp. 1748–1760, 2015.
  26. Y. Li, Z. Hu, D. M. Benton, A. Ali, M. Patel, and A. D. Ellis, “Demonstration of 10-channel mode-and polarization-division multiplexed free-space optical transmission with successive interference cancellation dsp,” Optics Letters, vol. 47, no. 11, pp. 2742–2745, 2022.
  27. Y. Li, Z. Chen, Z. Hu, D. M. Benton, A. A. I. Ali, M. Patel, M. P. J. Lavery, and A. D. Ellis, “Enhanced atmospheric turbulence resiliency with successive interference cancellation dsp in mode division multiplexing free-space optical links,” Journal of Lightwave Technology, vol. 40, no. 24, pp. 7769–7778, 2022.
  28. K. Pang, H. Song, X. Su, K. Zou, Z. Zhao, H. Song, A. Almaiman, R. Zhang, C. Liu, N. Hu, et al., “Experimental mitigation of the effects of the limited size aperture or misalignment by singular-value-decomposition-based beam orthogonalization in a free-space optical link using laguerre–gaussian modes,” Optics Letters, vol. 45, no. 22, pp. 6310–6313, 2020.
  29. Y. Yadin and M. Orenstein, “Parallel optical interconnects over multimode waveguides,” Journal of Lightwave Technology, vol. 24, no. 1, pp. 380–386, 2006.
  30. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science, vol. 289, no. 5477, pp. 281–283, 2000.
  31. Y. Yadin and M. Orenstein, “Parallel optical interconnects over multimode waveguides using mutually coherent channels and direct detection,” Journal of lightwave technology, vol. 25, no. 10, pp. 3126–3131, 2007.
  32. S. Huang and M. Safari, “Spatial-mode multiplexing with zero-forcing beamforming in free space optical communications,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 331–336, IEEE, 2017.
  33. K. Choutagunta, I. Roberts, D. A. Miller, and J. M. Kahn, “Adapting mach–zehnder mesh equalizers in direct-detection mode-division-multiplexed links,” Journal of Lightwave Technology, vol. 38, no. 4, pp. 723–735, 2019.
  34. A. Fardoost, H. Wen, H. Liu, F. G. Vanani, and G. Li, “Optimizing free space to few-modefiber coupling efficiency,” Applied Optics, vol. 58, no. 13, pp. D34–D38, 2019.
  35. M. D. Soltani, H. Kazemi, E. Sarbazi, T. E. El-Gorashi, J. M. Elmirghani, R. V. Penty, I. H. White, H. Haas, and M. Safari, “High-speed imaging receiver design for 6g optical wireless communications: a rate-fov trade-off,” IEEE Transactions on Communications, vol. 71, no. 2, pp. 1024–1043, 2022.
  36. P. J. Winzer and W. R. Leeb, “Fiber coupling efficiency for random light and its applications to lidar,” Optics letters, vol. 23, no. 13, pp. 986–988, 1998.
  37. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Applied Optics, vol. 44, no. 23, pp. 4946–4952, 2005.
  38. R. Brüning, Y. Zhang, M. McLaren, M. Duparré, and A. Forbes, “Overlap relation between free-space laguerre gaussian modes and step-index fiber modes,” JOSA A, vol. 32, no. 9, pp. 1678–1682, 2015.
  39. B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons, 2019.
  40. M. V. Vasnetsov, V. A. Pas’ko, and M. S. Soskin, “Analysis of orbital angular momentum of a misaligned optical beam,” New Journal of Physics, vol. 7, p. 46, feb 2005.
  41. S. Sun, N. An, F. Yang, J. Song, and Z. Han, “Capacity characterization analysis of optical intelligent reflecting surface assisted miso vlc,” IEEE Internet of Things Journal, vol. 11, no. 3, pp. 4801–4814, 2024.
  42. J.-B. Wang, Q.-S. Hu, J. Wang, M. Chen, and J.-Y. Wang, “Tight bounds on channel capacity for dimmable visible light communications,” Journal of Lightwave Technology, vol. 31, no. 23, pp. 3771–3779, 2013.
  43. M. Dehghani Soltani, E. Sarbazi, N. Bamiedakis, P. d. Souza, H. Kazemi, J. M. H. Elmirghani, I. H. White, R. V. Penty, H. Haas, and M. Safari, “Safety analysis for laser-based optical wireless communications: A tutorial,” Proceedings of the IEEE, vol. 110, no. 8, pp. 1045–1072, 2022.
  44. A. Wang and L. Zhu, “Deep learning based mode group recognition for mode division multiplexing in conventional multimode fiber,” in 2019 Asia Communications and Photonics Conference (ACP), pp. 1–3, 2019.

Summary

We haven't generated a summary for this paper yet.