Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implicit-explicit Crank-Nicolson scheme for Oseen's equation at high Reynolds number (2405.12562v1)

Published 21 May 2024 in math.NA and cs.NA

Abstract: In this paper we continue the work on implicit-explicit (IMEX) time discretizations for the incompressible Oseen equations that we started in \cite{BGG23} (E. Burman, D. Garg, J. Guzm`an, {\emph{Implicit-explicit time discretization for Oseen's equation at high Reynolds number with application to fractional step methods}}, SIAM J. Numer. Anal., 61, 2859--2886, 2023). The pressure velocity coupling and the viscous terms are treated implicitly, while the convection term is treated explicitly using extrapolation. Herein we focus on the implicit-explicit Crank-Nicolson method for time discretization. For the discretization in space we consider finite element methods with stabilization on the gradient jumps. The stabilizing terms ensures inf-sup stability for equal order interpolation and robustness at high Reynolds number. Under suitable Courant conditions we prove stability of the implicit-explicit Crank-Nicolson scheme in this regime. The stabilization allows us to prove error estimates of order $O(h{k+\frac12} + \tau2)$. Here $h$ is the mesh parameter, $k$ the polynomial order and $\tau$ the time step. Finally we discuss some fractional step methods that are implied by the IMEX scheme. Numerical examples are reported comparing the different methods when applied to the Navier-Stokes' equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com