Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative asymptotics for polynomial patterns in the primes (2405.12190v2)

Published 20 May 2024 in math.NT

Abstract: We prove quantitative estimates for averages of the von Mangoldt and M\"obius functions along polynomial progressions $n+P_1(m),\ldots, n+P_k(m)$ for a large class of polynomials $P_i$. The error terms obtained save an arbitrary power of logarithm, matching the classical Siegel--Walfisz error term. These results give the first quantitative bounds for the Tao--Ziegler polynomial patterns in the primes result. The proofs are based on a quantitative generalised von Neumann theorem of Peluse, a recent result of Leng on strong bounds for the Gowers uniformity of the primes, and analysis of a ``Siegel model'' for the von Mangoldt function along polynomial progressions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. Baier and L. Zhao. Primes in quadratic progressions on average. Math. Ann., 338(4):963–982, 2007.
  2. F. Balestrieri and N. Rome. Average Bateman-Horn for Kummer polynomials. Acta Arith., 207(4):315–350, 2023.
  3. A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp., 16:363–367, 1962.
  4. Bateman-Horn, polynomial Chowla and the Hasse principle with probability 1. arXiv e-prints, arXiv:2212.10373, December 2022.
  5. J. Friedlander and H. Iwaniec. Opera de Cribro, volume 57 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2010.
  6. B. Green and T. Tao. The primes contain arbitrarily long arithmetic progressions. Ann. of Math. (2), 167(2):481–547, 2008.
  7. B. Green and T. Tao. Linear equations in primes. Ann. of Math. (2), 171(3):1753–1850, 2010.
  8. B. Green and T. Tao. The Möbius function is strongly orthogonal to nilsequences. Ann. of Math. (2), 175(2):541–566, 2012.
  9. An inverse theorem for the Gowers Us+1⁢[N]superscript𝑈𝑠1delimited-[]𝑁U^{s+1}[N]italic_U start_POSTSUPERSCRIPT italic_s + 1 end_POSTSUPERSCRIPT [ italic_N ]-norm. Ann. of Math. (2), 176(2):1231–1372, 2012.
  10. H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
  11. B. Landreau. A new proof of a theorem of van der Corput. Bull. London Math. Soc., 21(4):366–368, 1989.
  12. J. Leng. Efficient Equidistribution of Nilsequences. arXiv e-prints, arXiv:2312.10772, February 2024.
  13. Quasipolynomial bounds on the inverse theorem for the Gowers Us+1⁢[N]superscript𝑈𝑠1delimited-[]𝑁U^{s+1}[N]italic_U start_POSTSUPERSCRIPT italic_s + 1 end_POSTSUPERSCRIPT [ italic_N ]-norm. arXiv e-prints, arXiv:2402.17994, February 2024.
  14. F. Manners. Quantitative bounds in the inverse theorem for the Gowers Us+1superscript𝑈𝑠1U^{s+1}italic_U start_POSTSUPERSCRIPT italic_s + 1 end_POSTSUPERSCRIPT-norms over cyclic groups. arXiv e-prints, arXiv:1811.00718, November 2018.
  15. Higher uniformity of bounded multiplicative functions in short intervals on average. Ann. of Math. (2), 197(2):739–857, 2023.
  16. S. Peluse. Bounds for sets with no polynomial progressions. Forum Math. Pi, 8:e16, 55, 2020.
  17. J. Pintz. Elementary methods in the theory of L𝐿Litalic_L-functions. V. The theorems of Landau and Page. Acta Arith., 32(2):163–171, 1977.
  18. T. Tao and J. Teräväinen. Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions. To appear in J. Eur. Math. Soc.
  19. T. Tao and T. Ziegler. The primes contain arbitrarily long polynomial progressions. Acta Math., 201(2):213–305, 2008.
  20. T. Tao and T. Ziegler. Polynomial patterns in the primes. Forum Math. Pi, 6:e1, 60, 2018.
  21. I. M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Dover Publications, Inc., Mineola, NY, 2004. Translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport, Reprint of the 1954 translation.
  22. N. H. Zhou. Primes in higher-order progressions on average. Int. J. Number Theory, 14(7):1943–1959, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com