Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Privacy-Aware Stochastic Sampling (2405.11975v3)

Published 20 May 2024 in eess.SY and cs.SY

Abstract: This paper presents a stochastic sampling framework for privacy-aware data sharing, where a sensor observes a process correlated with private information. A sampler determines whether to retain or discard sensor observations, balancing the tradeoff between data utility and privacy. Retained samples are shared with an adversary who may attempt to infer the private process, with privacy leakage quantified using mutual information. The sampler design is formulated as an optimization problem with two objectives: $\left(\romannumeral1\right)$ minimizing the reconstruction error of the observed process using the sampler's output, $\left(\romannumeral2\right)$ reducing the privacy leakages. For a general class of processes, we show that the optimal reconstruction policy is deterministic and derive the optimality conditions for the sampling policy using a dynamic decomposition method, which enables the sampler to control the adversary's belief about private inputs. For linear Gaussian processes, we propose a simplified design by restricting the sampling policy to a specific collection, providing analytical expressions for the reconstruction error, belief state, and sampling objectives based on conditional means and covariances. Additionally, we develop a numerical optimization algorithm to optimize the sampling and reconstruction policies, wherein the policy gradient theorem for the optimal sampling design is derived based on the implicit function theorem. Simulations demonstrate the effectiveness of the proposed method in achieving accurate state reconstruction, privacy protection, and data size reduction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2013.
  2. G. Sugiura, K. Ito, and K. Kashima, “Bayesian differential privacy for linear dynamical systems,” IEEE Control Systems Letters, vol. 6, pp. 896–901, 2021.
  3. T. Tanaka, M. Skoglund, H. Sandberg, and K. H. Johansson, “Directed information and privacy loss in cloud-based control,” in 2017 American control conference (ACC).   IEEE, 2017, pp. 1666–1672.
  4. E. Nekouei, T. Tanaka, M. Skoglund, and K. H. Johansson, “Information-theoretic approaches to privacy in estimation and control,” Annual Reviews in Control, vol. 47, pp. 412–422, 2019.
  5. T. L. Molloy and G. N. Nair, “Smoother entropy for active state trajectory estimation and obfuscation in pomdps,” IEEE Transactions on Automatic Control, 2023.
  6. S. Li, A. Khisti, and A. Mahajan, “Information-theoretic privacy for smart metering systems with a rechargeable battery,” IEEE Transactions on Information Theory, vol. 64, no. 5, pp. 3679–3695, 2018.
  7. A. Ünsal and M. Önen, “Information-theoretic approaches to differential privacy,” ACM Computing Surveys, vol. 56, no. 3, pp. 1–18, 2023.
  8. A. S. Leong, D. E. Quevedo, D. Dolz, and S. Dey, “Transmission scheduling for remote state estimation over packet dropping links in the presence of an eavesdropper,” IEEE Transactions on Automatic Control, vol. 64, no. 9, pp. 3732–3739, 2018.
  9. L. Wang, X. Cao, H. Zhang, C. Sun, and W. X. Zheng, “Transmission scheduling for privacy-optimal encryption against eavesdropping attacks on remote state estimation,” Automatica, vol. 137, p. 110145, 2022.
  10. A. S. Leong, D. E. Quevedo, D. Dolz, and S. Dey, “Information bounds for state estimation in the presence of an eavesdropper,” IEEE Control Systems Letters, vol. 3, no. 3, pp. 547–552, 2019.
  11. L. Huang, K. Ding, A. S. Leong, D. E. Quevedo, and L. Shi, “Encryption scheduling for remote state estimation under an operation constraint,” Automatica, vol. 127, p. 109537, 2021.
  12. D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli, and L. Shi, “Stochastic event-triggered sensor schedule for remote state estimation,” IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2661–2675, 2015.
  13. B. Demirel, A. S. Leong, V. Gupta, and D. E. Quevedo, “Tradeoffs in stochastic event-triggered control,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2567–2574, 2018.
  14. T. Fiez, B. Chasnov, and L. Ratliff, “Implicit learning dynamics in stackelberg games: Equilibria characterization, convergence analysis, and empirical study,” in International Conference on Machine Learning.   PMLR, 2020, pp. 3133–3144.
  15. C. Weng, E. Nekouei, and K. H. Johansson, “Optimal privacy-aware dynamic estimation,” arXiv preprint arXiv:2311.05896, 2023.
  16. D. Tsur, Z. Aharoni, Z. Goldfeld, and H. Permuter, “Neural estimation and optimization of directed information over continuous spaces,” IEEE Transactions on Information Theory, 2023.
  17. K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical University of Denmark, vol. 7, no. 15, p. 510, 2008.

Summary

We haven't generated a summary for this paper yet.