Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Braiding Topology of Non-Hermitian Open-Boundary Bands (2405.11832v3)

Published 20 May 2024 in cond-mat.mes-hall

Abstract: There has been much recent interest and progress on topological structures of the non-Hermitian Bloch bands. Here, we study the topological structures of non-Bloch bands of non-Hermitian multiband quantum systems under open boundary conditions, which has received limited attention in prior studies. Using a continuity criterion and an efficient sub-generalized Brillouin zone (sub-GBZ) algorithm, we establish a homotopic characterization -- braiding topology, e.g., characterized by the band's total vorticity -- for open-boundary bands and sub-GBZs. Such topological identification is robust without topological transition and emergent degenerate points, such as exceptional points. We further analyze the transition's impact on bands and spectral flows, including interesting properties unique to open boundaries, and numerically demonstrate our conclusions with tight-binding model examples. We unveil a crucial insight that open-boundary bands interchange their portions after encountering certain exceptional points. Our results enrich the foundational understanding of topological characterizations for generic non-Hermitian quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. J. J. Quinn and K.-S. Yi, Solid State Physics: Principles and Modern Applications (Springer International Publishing, Cham, 2018).
  2. P. Phillips, Advanced Solid State Physics, 2nd ed. (Cambridge University Press, Cambridge, 2012).
  3. J. Negele, Quantum Many-particle Systems (CRC Press, Boca Raton, 1998).
  4. G. D. Mahan, Many-Particle Physics (Springer, New York, NY, 2000).
  5. A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge University Press, 2010).
  6. E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press, 2013).
  7. N. Nagaosa and S. Heusler, Quantum Field Theory in Condensed Matter Physics, Theoretical and Mathematical Physics (Springer Berlin Heidelberg, 2013).
  8. A. Yuto, G. Zongping, and U. Masahito, Non-hermitian physics, Advances in Physics 69, 249 (2020).
  9. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).
  10. N. Okuma and M. Sato, Non-hermitian topological phenomena: A review, Annual Review of Condensed Matter Physics 14, 83 (2023).
  11. D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-hermitian boundary modes and topology, Phys. Rev. Lett. 124, 056802 (2020).
  12. V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 121401 (2018).
  13. S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
  14. K. Yokomizo and S. Murakami, Non-bloch band theory of non-hermitian systems, Phys. Rev. Lett. 123, 066404 (2019).
  15. C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-hermitian systems, Phys. Rev. B 99, 201103 (2019).
  16. K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-hermitian systems, Phys. Rev. Lett. 125, 126402 (2020).
  17. Y. Fu and S. Wan, Degeneracy and defectiveness in non-hermitian systems with open boundary, Phys. Rev. B 105, 075420 (2022).
  18. Y. Fu and Y. Zhang, Anatomy of open-boundary bulk in multiband non-hermitian systems, Phys. Rev. B 107, 115412 (2023a).
  19. W. Wang, X. Wang, and G. Ma, Non-hermitian morphing of topological modes, Nature 608, 50 (2022).
  20. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  21. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  22. B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, 2013).
  23. K. Kawabata, M. Sato, and K. Shiozaki, Higher-order non-hermitian skin effect, Phys. Rev. B 102, 205118 (2020).
  24. R. Okugawa, R. Takahashi, and K. Yokomizo, Second-order topological non-hermitian skin effects, Phys. Rev. B 102, 241202 (2020).
  25. Y. Fu, J. Hu, and S. Wan, Non-hermitian second-order skin and topological modes, Phys. Rev. B 103, 045420 (2021).
  26. W. Zhu and J. Gong, Hybrid skin-topological modes without asymmetric couplings, Phys. Rev. B 106, 035425 (2022).
  27. K. Zhang, Z. Yang, and C. Fang, Universal non-hermitian skin effect in two and higher dimensions, Nature Communications 13, 2496 (2022).
  28. H.-Y. Wang, F. Song, and Z. Wang, Amoeba formulation of non-bloch band theory in arbitrary dimensions, Phys. Rev. X 14, 021011 (2024a).
  29. H. Hu, Non-hermitian band theory in all dimensions: uniform spectra and skin effect (2023), arXiv:2306.12022 [cond-mat.mes-hall] .
  30. Y. Xiong and H. Hu, Graph morphology of non-hermitian bands (2023), arXiv:2311.14921 [cond-mat.mes-hall] .
  31. L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free localization, Communications Physics 4, 42 (2021).
  32. P. Molignini, O. Arandes, and E. J. Bergholtz, Anomalous skin effects in disordered systems with a single non-hermitian impurity, Phys. Rev. Res. 5, 033058 (2023).
  33. Y. Fu and Y. Zhang, Hybrid scale-free skin effect in non-hermitian systems: A transfer matrix approach, Phys. Rev. B 108, 205423 (2023b).
  34. C. Kassel, O. Dodane, and V. Turaev, Braid Groups, Graduate Texts in Mathematics (Springer New York, 2008).
  35. L. Kauffman, Knots and Physics, 4th ed., Series on Knots and Everything: Volume 53 (World Scientific, Singapore, 2013).
  36. W. Chen, H.-Z. Lu, and J.-M. Hou, Topological semimetals with a double-helix nodal link, Phys. Rev. B 96, 041102 (2017).
  37. Z. Yang and J. Hu, Non-hermitian hopf-link exceptional line semimetals, Phys. Rev. B 99, 081102 (2019).
  38. M. Stålhammar and E. J. Bergholtz, Classification of exceptional nodal topologies protected by 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T symmetry, Phys. Rev. B 104, L201104 (2021).
  39. K. Ding, C. Fang, and G. Ma, Non-hermitian topology and exceptional-point geometries, Nature Reviews Physics 4, 745 (2022).
  40. H. Hu, S. Sun, and S. Chen, Knot topology of exceptional point and non-hermitian no-go theorem, Phys. Rev. Res. 4, L022064 (2022).
  41. Z. Li and R. S. K. Mong, Homotopical characterization of non-hermitian band structures, Phys. Rev. B 103, 155129 (2021).
  42. H. Hu and E. Zhao, Knots and non-hermitian bloch bands, Phys. Rev. Lett. 126, 010401 (2021).
  43. Z. Li, K. Ding, and G. Ma, Eigenvalue knots and their isotopic equivalence in three-state non-hermitian systems, Phys. Rev. Res. 5, 023038 (2023b).
  44. W. B. Rui, Y. X. Zhao, and Z. D. Wang, Hermitian topologies originating from non-hermitian braidings, Phys. Rev. B 108, 165105 (2023).
  45. H. Wang, L. Fan, and S. Fan, One-dimensional non-hermitian band structures as riemann surfaces (2024b), arXiv:2401.11661 [math-ph] .
  46. For simplicity, we have set the lattice constant to 1.
  47. See supplemental material.
  48. We have unified our references of links and knots as knots for simplicity.
  49. The vorticity expression for is always well-defined: the derivative of εi−εjsubscript𝜀𝑖subscript𝜀𝑗\varepsilon_{i}-\varepsilon_{j}italic_ε start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_ε start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT may be discontinuous at cusps or bifurcation points of the spectrum, yet such singularity originates from the absolute value instead of the argument.
  50. E. Witten, Quantum field theory and the jones polynomial, Communications in Mathematical Physics 121, 351 (1989).
  51. J. Fröhlich and C. King, The chern-simons theory and knot polynomials, Communications in Mathematical Physics 126, 167 (1989).
  52. P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Advances in Mathematics 186, 58 (2004).
  53. H. Shen, B. Zhen, and L. Fu, Topological band theory for non-hermitian hamiltonians, Phys. Rev. Lett. 120, 146402 (2018).
  54. W. D. Heiss, The physics of exceptional points, Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).
  55. T. E. Lee, Anomalous edge state in a non-hermitian lattice, Phys. Rev. Lett. 116, 133903 (2016).
Citations (2)

Summary

We haven't generated a summary for this paper yet.