Non-Abelian Self-Correcting Quantum Memory (2405.11719v3)
Abstract: We construct a family of infinitely many new candidate non-Abelian self-correcting topological quantum memories in $D\geq 5+1$ spacetime dimensions without particle excitations using local commuting non-Pauli stabilizer lattice models and field theories of $\mathbb{Z}_23$ higher-form gauge fields with nontrivial topological action. We call such non-Pauli stabilizer models magic stabilizer codes. The family of topological orders have Abelian electric excitations and non-Abelian magnetic excitations that obey Ising-like fusion rules and non-Abelian braiding, including Borromean ring type braiding which is a signature of non-Abelian topological order, generalizing the dihedral group $\mathbb{D}_8$ gauge theory in (2+1)D. The simplest example includes a new non-Abelian self-correcting memory in (5+1)D with Abelian loop excitations and non-Abelian membrane excitations. We prove the self-correction property and the thermal stability, and devise a probabilistic local cellular-automaton decoder.
- M. Iqbal et al., “Non-Abelian topological order and anyons on a trapped-ion processor,” Nature 626 no. 7999, (2024) 505–511, arXiv:2305.03766 [quant-ph].
- Z. Nussinov and G. Ortiz, “Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems,” Physical Review B 77 no. 6, (Feb., 2008) . http://dx.doi.org/10.1103/PhysRevB.77.064302.
- S. Bravyi and B. Terhal, “A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes,” New Journal of Physics 11 no. 4, (Apr., 2009) 043029. http://dx.doi.org/10.1088/1367-2630/11/4/043029.
- M. B. Hastings, “Topological order at nonzero temperature,” Phys. Rev. Lett. 107 (Nov, 2011) 210501. https://link.aps.org/doi/10.1103/PhysRevLett.107.210501.
- B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R. Wootton, “Quantum memories at finite temperature,” Reviews of Modern Physics 88 no. 4, (Nov., 2016) . http://dx.doi.org/10.1103/RevModPhys.88.045005.
- L. Guth and A. Lubotzky, “Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds,” Journal of Mathematical Physics 55 no. 8, (2014) 082202.
- N. P. Breuckmann and V. Londe, “Single-Shot Decoding of Linear Rate LDPC Quantum Codes with High Performance,” arXiv quant-ph (2020) , 2001.03568.
- M. Freedman and M. B. Hastings, “Building manifolds from quantum codes,” arXiv:2012.02249 (2020) .
- S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov, P. Rall, and T. J. Yoder, “High-threshold and low-overhead fault-tolerant quantum memory,” Nature 627 no. 8005, (2024) 778–782. https://doi.org/10.1038/s41586-024-07107-7.
- N. P. Breuckmann, C. Vuillot, E. Campbell, A. Krishna, and B. M. Terhal, “Hyperbolic and semi-hyperbolic surface codes for quantum storage,” Quantum Science and Technology 2 no. 3, (Aug., 2017) 035007–21.
- M. Hastings, J. Haah, and R. O’Donnell, “Fiber bundle codes: breaking the n1/2polylog(n)superscript𝑛12polylog𝑛n^{1/2}\textrm{polylog}(n)italic_n start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT polylog ( italic_n ) barrier for quantum ldpc codes,” in Proc. ACM STOC, pp. 1276–1288. Association for Computing Machinery, New York, NY, USA, 2021.
- P. Panteleev and G. Kalachev, “Quantum ldpc codes with almost linear minimum distance,” IEEE Trans. Inf. Theo. 68 no. 1, (2022) 213–229.
- N. P. Breuckmann and J. N. Eberhardt, “Balanced product quantum codes,” IEEE Trans. Inf. Theo. 67 no. 10, (2021) 6653–6674.
- M. Hastings, “On quantum weight reduction,” arXiv:2102.10030 (2021) .
- P. Panteleev and G. Kalachev, “Asymptotically good quantum and locally testable classical ldpc codes,” in Proc. ACM STOC, pp. 375—388. Association for Computing Machinery, New York, NY, USA, 2022.
- A. Leverrier and G. Zemor, “Quantum tanner codes,” in Proc. IEEE FOCS, pp. 872–883. IEEE Computer Society, Los Alamitos, CA, USA, 2022. https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00117.
- T. Lin and M. Hsieh, “Good quantum ldpc codes with linear time decoder from lossless expanders,” arXiv:2203.03581 (2022) .
- S. Gu, C. Pattison, and E. Tang, “An efficient decoder for a linear distance quantum ldpc code,” arXiv:2206.06557 (2022) .
- I. Dinur, M. Hsieh, T. Lin, and T. Vidick, “Good quantum ldpc codes with linear time decoders,” in Proc. ACM STOC, pp. 905–918. Association for Computing Machinery, New York, NY, USA, 2023.
- 2023. https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch45.
- S. Gu, E. Tang, L. Caha, S. Choe, Z. He, and A. Kubica, “Single-shot decoding of good quantum ldpc codes,” arXiv:2306.12470 (2023) .
- X. Chen, A. Dua, P.-S. Hsin, C.-M. Jian, W. Shirley, and C. Xu, “Loops in 4+1d Topological Phases,” arXiv:2112.02137 [cond-mat.str-el].
- B. Yoshida, “Feasibility of self-correcting quantum memory and thermal stability of topological order,” Annals of Physics 326 no. 10, (Oct., 2011) 2566–2633. http://dx.doi.org/10.1016/j.aop.2011.06.001.
- E. T. Campbell, B. M. Terhal, and C. Vuillot, “Roads towards fault-tolerant universal quantum computation,” Nature 549 no. 7671, (09, 2017) 172–179.
- E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,” J. Math. Phys. 43 (2002) 4452–4505, arXiv:quant-ph/0110143.
- H. Bombin, “Single-shot fault-tolerant quantum error correction,” Phys. Rev. X 5 no. 3, (2015) 031043.
- G. Zhu, A. Lavasani, and M. Barkeshli, “Universal logical gates on topologically encoded qubits via constant-depth unitary circuits,” Phys. Rev. Lett. 125 (Jul, 2020) 050502. https://link.aps.org/doi/10.1103/PhysRevLett.125.050502.
- G. Zhu, A. Lavasani, and M. Barkeshli, “Instantaneous braids and dehn twists in topologically ordered states,” Phys. Rev. B 102 (Aug, 2020) 075105. https://link.aps.org/doi/10.1103/PhysRevB.102.075105.
- A. Lavasani, G. Zhu, and M. Barkeshli, “Universal logical gates with constant overhead: instantaneous dehn twists for hyperbolic quantum codes,” Quantum 3, 180 (2019) .
- H. Bombin, R. W. Chhajlany, M. Horodecki, and M. A. Martin-Delgado, “Self-correcting quantum computers,” New Journal of Physics 15 no. 5, (May, 2013) 055023–44.
- T. Johnson-Freyd and M. Yu, “Topological Orders in (4+1)-Dimensions,” SciPost Phys. 13 no. 3, (2022) 068, arXiv:2104.04534 [hep-th].
- C. Cordova, P.-S. Hsin, and C. Zhang, “Anomalies of Non-Invertible Symmetries in (3+1)d,” arXiv:2308.11706 [hep-th].
- L. Kong and X.-G. Wen, “Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions,” arXiv:1405.5858 [cond-mat.str-el].
- L. Kong, X.-G. Wen, and H. Zheng, “Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers,” 2015.
- L. Kong, X.-G. Wen, and H. Zheng, “Boundary-bulk relation in topological orders,” Nuclear Physics B 922 (Sept., 2017) 62–76. http://dx.doi.org/10.1016/j.nuclphysb.2017.06.023.
- T. Johnson-Freyd, “On the classification of topological orders,” Communications in Mathematical Physics 393 no. 2, (Apr., 2022) 989–1033. http://dx.doi.org/10.1007/s00220-022-04380-3.
- N. Madras and G. Slade, The Self-Avoiding Walk. Modern Birkhäuser Classics. Springer New York, 2012. https://books.google.com/books?id=xo32YMglDOcC.
- M. de Wild Propitius, “Confinement in partially broken abelian chern-simons theories,” Physics Letters B 410 no. 2, (1997) 188–194. https://www.sciencedirect.com/science/article/pii/S0370269397009854.
- A. Coste, T. Gannon, and P. Ruelle, “Finite group modular data,” Nucl. Phys. B 581 (2000) 679–717, arXiv:hep-th/0001158.
- P.-S. Hsin and A. Turzillo, “Symmetry-enriched quantum spin liquids in (3 + 1)d𝑑ditalic_d,” JHEP 09 (2020) 022, arXiv:1904.11550 [cond-mat.str-el].
- M. Barkeshli, Y.-A. Chen, P.-S. Hsin, and R. Kobayashi, “Higher-group symmetry in finite gauge theory and stabilizer codes,” SciPost Phys. 16 (2024) 089, arXiv:2211.11764 [cond-mat.str-el].
- E. Witten, “Five-brane effective action in M theory,” J. Geom. Phys. 22 (1997) 103–133, arXiv:hep-th/9610234.
- E. Witten, “AdS / CFT correspondence and topological field theory,” JHEP 12 (1998) 012, arXiv:hep-th/9812012.
- E. Witten, “Geometric Langlands From Six Dimensions,” arXiv:0905.2720 [hep-th].
- D. S. Freed and C. Teleman, “Relative quantum field theory,” Commun. Math. Phys. 326 (2014) 459–476, arXiv:1212.1692 [hep-th].
- To appear.
- B. Yoshida, “Topological color code and symmetry-protected topological phases,” Phys. Rev. B 91 (Jun, 2015) 245131. https://link.aps.org/doi/10.1103/PhysRevB.91.245131.
- B. Yoshida, “Topological phases with generalized global symmetries,” Phys. Rev. B 93 (Apr, 2016) 155131. https://link.aps.org/doi/10.1103/PhysRevB.93.155131.
- B. Yoshida, “Gapped boundaries, group cohomology and fault-tolerant logical gates,” Annals of Physics 377 (2017) 387–413. https://www.sciencedirect.com/science/article/pii/S0003491616302858.
- M. Barkeshli, Y.-A. Chen, S.-J. Huang, R. Kobayashi, N. Tantivasadakarn, and G. Zhu, “Codimension-2 defects and higher symmetries in (3+ 1) d topological phases,” SciPost Physics 14 no. 4, (2023) 065.
- F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
- L. Tsui and X.-G. Wen, “Lattice models that realize 𝕫nsubscript𝕫𝑛{\mathbb{z}}_{n}blackboard_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-1 symmetry-protected topological states for even n𝑛nitalic_n,” Phys. Rev. B 101 (Jan, 2020) 035101.
- Y.-A. Chen and S. Tata, “Higher cup products on hypercubic lattices: application to lattice models of topological phases,” arXiv:2106.05274 [cond-mat.str-el].
- X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Phys. Rev. B 87 no. 15, (2013) 155114, arXiv:1106.4772 [cond-mat.str-el].
- L. Tsui and X.-G. Wen, “Lattice models that realize ℤnsubscriptℤ𝑛\mathbb{Z}_{n}blackboard_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-1 symmetry-protected topological states for even n𝑛nitalic_n,” Phys. Rev. B 101 no. 3, (2020) 035101, arXiv:1908.02613 [cond-mat.str-el].
- M. Levin and Z.-C. Gu, “Braiding statistics approach to symmetry-protected topological phases,” Phys. Rev. B 86 (Sep, 2012) 115109. https://link.aps.org/doi/10.1103/PhysRevB.86.115109.
- L. Bhardwaj, D. Gaiotto, and A. Kapustin, “State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter,” JHEP 04 (2017) 096, arXiv:1605.01640 [cond-mat.str-el].
- W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order from gauging subsystem symmetries,” SciPost Phys. 6 no. 4, (2019) 041, arXiv:1806.08679 [cond-mat.str-el].
- A. Kubica, B. Yoshida, and F. Pastawski, “Unfolding the color code,” New J. Phys. 17 no. 8, (2015) 083026, arXiv:1503.02065 [quant-ph].
- H. Bombin and M. A. Martin-Delgado, “Topological quantum distillation,” Phys. Rev. Lett. 97 (2006) 180501, arXiv:quant-ph/0605138.
- G. Zhu, S. Sikander, E. Portnoy, A. W. Cross, and B. J. Brown, “Non-clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum ldpc codes via higher symmetries,” arXiv preprint arXiv:2310.16982 (2023) .
- M. Barkeshli, P.-S. Hsin, and R. Kobayashi, “Higher-group symmetry of (3+1)D fermionic ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theory: logical CCZ, CS, and T gates from higher symmetry,” SciPost Phys. 16 (2024) 122, arXiv:2311.05674 [cond-mat.str-el].
- P. Putrov, J. Wang, and S.-T. Yau, “Braiding Statistics and Link Invariants of Bosonic/Fermionic Topological Quantum Matter in 2+1 and 3+1 dimensions,” Annals Phys. 384 (2017) 254–287, arXiv:1612.09298 [cond-mat.str-el].
- B. Durhuus, J. Fröhlich, and T. Jonsson, “Self-avoiding and planar random surfaces on the lattice,” Nuclear Physics B 225 no. 2, (1983) 185–203. https://www.sciencedirect.com/science/article/pii/0550321383900482.
- R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki, “On thermal stability of topological qubit in kitaev’s 4d model,” Open Systems & Information Dynamics 17 no. 01, (2010) 1–20.
- A. Dua, T. Jochym-O’Connor, and G. Zhu, “Quantum error correction with fractal topological codes,” Quantum 7 (2023) 1122.
- Annals of mathematics studies. Princeton University Press, 1974. https://books.google.com/books?id=5zQ9AFk1i4EC.
- D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].