Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing Group Fairness with Social Welfare Optimization (2405.11421v1)

Published 19 May 2024 in cs.AI, cs.CY, and cs.GT

Abstract: Statistical parity metrics have been widely studied and endorsed in the AI community as a means of achieving fairness, but they suffer from at least two weaknesses. They disregard the actual welfare consequences of decisions and may therefore fail to achieve the kind of fairness that is desired for disadvantaged groups. In addition, they are often incompatible with each other, and there is no convincing justification for selecting one rather than another. This paper explores whether a broader conception of social justice, based on optimizing a social welfare function (SWF), can be useful for assessing various definitions of parity. We focus on the well-known alpha fairness SWF, which has been defended by axiomatic and bargaining arguments over a period of 70 years. We analyze the optimal solution and show that it can justify demographic parity or equalized odds under certain conditions, but frequently requires a departure from these types of parity. In addition, we find that predictive rate parity is of limited usefulness. These results suggest that optimization theory can shed light on the intensely discussed question of how to achieve group fairness in AI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Violet Chen (3 papers)
  2. J. N. Hooker (10 papers)
  3. Derek Leben (1 paper)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com