Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second-harmonic optical diffraction tomography (2405.11398v1)

Published 18 May 2024 in physics.optics

Abstract: Optical diffraction tomography (ODT) has emerged as an important label-free tool in biomedicine to measure the three-dimensional (3D) structure of a biological sample. In this paper, we describe ODT using second-harmonic generation (SHG) which is a coherent nonlinear optical process with a strict symmetry selectivity and has several advantages over traditional fluorescence methods. We report the tomographic retrieval of the 3D second-order nonlinear optical susceptibility using two-dimensional holographic measurements of the SHG fields at different illumination angles and polarization states. The method is a generalization of the conventional linear ODT to the nonlinear scenario. We demonstrate the method with a numerically simulated nanoparticle distribution and an experiment with muscle tissue fibers. Our results show that SHG ODT does not only provide an effective contrast mechanism for label-free imaging but also due to the symmetry requirement enables the visualization of properties that are not otherwise accessible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Optics communications, vol. 1, no. 4, pp. 153–156, 1969.
  2. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Optics express, vol. 17, no. 1, pp. 266–277, 2009.
  3. D. Jin, R. Zhou, Z. Yaqoob, and P. T. So, “Tomographic phase microscopy: principles and applications in bioimaging,” JOSA B, vol. 34, no. 5, pp. B64–B77, 2017.
  4. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nature photonics, vol. 12, no. 10, pp. 578–589, 2018.
  5. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Optics express, vol. 23, no. 13, pp. 16933–16948, 2015.
  6. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Learning approach to optical tomography,” Optica, vol. 2, no. 6, pp. 517–522, 2015.
  7. L. Tian and L. Waller, “3d intensity and phase imaging from light field measurements in an led array microscope,” optica, vol. 2, no. 2, pp. 104–111, 2015.
  8. A. Saba, C. Gigli, A. B. Ayoub, and D. Psaltis, “Physics-informed neural networks for diffraction tomography,” Advanced Photonics, vol. 4, no. 6, p. 066001, 2022.
  9. A. Saba, J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, “Polarization-sensitive optical diffraction tomography,” Optica, vol. 8, no. 3, pp. 402–408, 2021.
  10. S. Shin, J. Eun, S. S. Lee, C. Lee, H. Hugonnet, D. K. Yoon, S.-H. Kim, J. Jeong, and Y. Park, “Tomographic measurement of dielectric tensors at optical frequency,” Nature Materials, vol. 21, no. 3, pp. 317–324, 2022.
  11. R. W. Boyd, Nonlinear optics. Academic press, 2020.
  12. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Optics letters, vol. 11, no. 2, pp. 94–96, 1986.
  13. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative second-harmonic generation microscopy in collagen,” Applied optics, vol. 42, no. 25, pp. 5209–5219, 2003.
  14. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophysical journal, vol. 90, no. 2, pp. 693–703, 2006.
  15. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proceedings of the National Academy of Sciences, vol. 107, no. 17, pp. 7763–7768, 2010.
  16. M. Dubreuil, F. Tissier, L. Le Roy, J.-P. Pennec, S. Rivet, M.-A. Giroux-Metges, and Y. Le Grand, “Polarization-resolved second harmonic microscopy of skeletal muscle in sepsis,” Biomedical optics express, vol. 9, no. 12, pp. 6350–6358, 2018.
  17. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Applied Optics, vol. 47, no. 4, pp. A103–A110, 2008.
  18. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Optics express, vol. 18, no. 10, pp. 9840–9851, 2010.
  19. E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,” in Multiphoton Microscopy in the Biomedical Sciences XI, vol. 7903, pp. 63–68, SPIE, 2011.
  20. C. Hu, J. J. Field, V. Kelkar, B. Chiang, K. Wernsing, K. C. Toussaint, R. A. Bartels, and G. Popescu, “Harmonic optical tomography of nonlinear structures,” Nature Photonics, vol. 14, no. 9, pp. 564–569, 2020.
  21. W. Yu, X. Li, B. Wang, J. Qu, and L. Liu, “Optical diffraction tomography of second-order nonlinear structures in weak scattering media: theoretical analysis and experimental consideration,” Optics Express, vol. 30, no. 25, pp. 45724–45737, 2022.
  22. B. Chen and J. J. Stamnes, “Validity of diffraction tomography based on the first born and the first rytov approximations,” Applied optics, vol. 37, no. 14, pp. 2996–3006, 1998.
  23. M. Rivard, C.-A. Couture, A. K. Miri, M. Laliberté, A. Bertrand-Grenier, L. Mongeau, and F. Légaré, “Imaging the bipolarity of myosin filaments with interferometric second harmonic generation microscopy,” Biomedical Optics Express, vol. 4, no. 10, pp. 2078–2086, 2013.
  24. A. Devaney, “Inverse-scattering theory within the rytov approximation,” Optics letters, vol. 6, no. 8, pp. 374–376, 1981.

Summary

We haven't generated a summary for this paper yet.