Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Propositional dynamic logic and asynchronous cascade decompositions for regular trace languages (2405.11308v1)

Published 18 May 2024 in cs.FL and cs.LO

Abstract: We propose a local, past-oriented fragment of propositional dynamic logic to reason about concurrent scenarios modelled as Mazurkiewicz traces, and prove it to be expressively complete with respect to regular trace languages. Because of locality, specifications in this logic are efficiently translated into asynchronous automata, in a way that reflects the structure of formulas. In particular, we obtain a new proof of Zielonka's fundamental theorem and we prove that any regular trace language can be implemented by a cascade product of localized asynchronous automata, which essentially operate on a single process. These results refine earlier results by Adsul et al. which involved a larger fragment of past propositional dynamic logic and used Mukund and Sohoni's gossip automaton. Our new results avoid using this automaton, or Zielonka's timestamping mechanism and, in particular, they show how to implement a gossip automaton as a cascade product.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Wreath/cascade products and related decomposition results for the concurrent setting of Mazurkiewicz traces. In Igor Konnov and Laura Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
  2. Asynchronous wreath product and cascade decompositions for concurrent behaviours. Log. Methods Comput. Sci., 18, 2022.
  3. Propositional dynamic logic and asynchronous cascade decompositions for regular trace languages. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, 33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 28:1–28:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2022.28, doi:10.4230/LIPICS.CONCUR.2022.28.
  4. Asynchronous automata-theoretic characterization of aperiodic trace languages. In FSTTCS 2004: Foundations of Software Technology and Theoretical Computer Science, 24th International Conference, Chennai, India, December 16-18, 2004, Proceedings, pages 84–96, 2004. doi:10.1007/978-3-540-30538-5\_8.
  5. Communicating finite-state machines, first-order logic, and star-free propositional dynamic logic. J. Comput. Syst. Sci., 115:22–53, 2021. doi:10.1016/j.jcss.2020.06.006.
  6. Propositional dynamic logic for message-passing systems. Log. Methods Comput. Sci., 6(3), 2010. URL: http://arxiv.org/abs/1007.4764.
  7. Linear temporal logic and linear dynamic logic on finite traces. In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
  8. Partial commutation and traces. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages 457–533. Springer, 1997. doi:10.1007/978-3-642-59126-6\_8.
  9. Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, 1995. doi:10.1142/2563.
  10. Logical definability on infinite traces. Theor. Comput. Sci., 154(1):67–84, 1996.
  11. Propositional dynamic logic of regular programs. Journal of Computer and System Sciences, 18(2):194–211, 1979.
  12. Pure-past linear temporal and dynamic logic on finite traces. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 4959–4965. ijcai.org, 2020. URL: https://doi.org/10.24963/ijcai.2020/690, doi:10.24963/IJCAI.2020/690.
  13. Star-free trace languages. Theor. Comput. Sci., 97(2):301–311, 1992.
  14. Determinizing asynchronous automata. In Serge Abiteboul and Eli Shamir, editors, Automata, Languages and Programming, 21st International Colloquium, ICALP94, Jerusalem, Israel, July 11-14, 1994, Proceedings, volume 820 of Lecture Notes in Computer Science, pages 130–141. Springer, 1994. doi:10.1007/3-540-58201-0\_63.
  15. Algebraic theory of machines I. Prime decomposition theorem for finite semigroups and machines. Transactions of The American Mathematical Society, 116, 04 1965. doi:10.2307/1994127.
  16. Antoni Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Report Series, 6(78), Jul. 1977. doi:10.7146/dpb.v6i78.7691.
  17. Roy Mennicke. Propositional dynamic logic with converse and repeat for message-passing systems. Log. Methods Comput. Sci., 9(2), 2013. doi:10.2168/LMCS-9(2:12)2013.
  18. Keeping track of the latest gossip in a distributed system. Distributed Comput., 10(3):137–148, 1997. doi:10.1007/s004460050031.
  19. Howard Straubing. Finite automata, formal logic, and circuit complexity. Birkhaüser Verlag, Basel, Switzerland, 1994.
  20. Wolfgang Thomas. On logical definability of trace languages. In V. Diekert, editor, Proceedings of a workshop of the ESPRIT Basic Research Action No 3166: Algebraic and Syntactic Methods in Computer Science (ASMICS), Kochel am See, Bavaria, FRG (1989), Report TUM-I9002, Technical University of Munich, pages 172–182, 1990.
  21. Wieslaw Zielonka. Notes on finite asynchronous automata. RAIRO Theor. Informatics Appl., 21(2):99–135, 1987. doi:10.1051/ita/1987210200991.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com