Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images (2405.11293v1)

Published 18 May 2024 in cs.CV

Abstract: Recently, the field of few-shot detection within remote sensing imagery has witnessed significant advancements. Despite these progresses, the capacity for continuous conceptual learning still poses a significant challenge to existing methodologies. In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images. We introduce a pioneering fine-tuningbased technique, termed InfRS, designed to facilitate the incremental learning of novel classes using a restricted set of examples, while concurrently preserving the performance on established base classes without the need to revisit previous datasets. Specifically, we pretrain the model using abundant data from base classes and then generate a set of class-wise prototypes that represent the intrinsic characteristics of the data. In the incremental learning stage, we introduce a Hybrid Prototypical Contrastive (HPC) encoding module for learning discriminative representations. Furthermore, we develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem. Comprehensive evaluations on the NWPU VHR-10 and DIOR datasets demonstrate that our model can effectively solve the iFSOD problem in remote sensing images. Code will be released.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in optical remote sensing images: A survey and a new benchmark,” ISPRS journal of photogrammetry and remote sensing, vol. 159, pp. 296–307, 2020.
  2. Z. Li, Y. Wang, N. Zhang, Y. Zhang, Z. Zhao, D. Xu, G. Ben, and Y. Gao, “Deep learning-based object detection techniques for remote sensing images: A survey,” Remote Sensing, vol. 14, no. 10, p. 2385, 2022.
  3. G. Cheng and J. Han, “A survey on object detection in optical remote sensing images,” ISPRS journal of photogrammetry and remote sensing, vol. 117, pp. 11–28, 2016.
  4. S. Antonelli, D. Avola, L. Cinque, D. Crisostomi, G. L. Foresti, F. Galasso, M. R. Marini, A. Mecca, and D. Pannone, “Few-shot object detection: A survey,” ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.
  5. M. Köhler, M. Eisenbach, and H.-M. Gross, “Few-shot object detection: A comprehensive survey,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  6. Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A survey on few-shot learning,” ACM computing surveys (csur), vol. 53, no. 3, pp. 1–34, 2020.
  7. J.-M. Perez-Rua, X. Zhu, T. M. Hospedales, and T. Xiang, “Incremental few-shot object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13 846–13 855.
  8. L. Yin, J. M. Perez-Rua, and K. J. Liang, “Sylph: A hypernetwork framework for incremental few-shot object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9035–9045.
  9. M. Cheng, H. Wang, and Y. Long, “Meta-learning-based incremental few-shot object detection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 4, pp. 2158–2169, 2021.
  10. H. Feng, L. Zhang, X. Yang, and Z. Liu, “Incremental few-shot object detection via knowledge transfer,” Pattern Recognition Letters, vol. 156, pp. 67–73, 2022.
  11. L. Zhang, X. Yang, L. Qi, S. Zeng, and Z. Liu, “Incremental few-shot object detection with scale-and centerness-aware weight generation,” Computer Vision and Image Understanding, vol. 235, p. 103774, 2023.
  12. J. Ding, N. Xue, G.-S. Xia, X. Bai, W. Yang, M. Y. Yang, S. Belongie, J. Luo, M. Datcu, M. Pelillo et al., “Object detection in aerial images: A large-scale benchmark and challenges,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 11, pp. 7778–7796, 2021.
  13. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in neural information processing systems, vol. 33, pp. 18 661–18 673, 2020.
  14. M. Zheng, F. Wang, S. You, C. Qian, C. Zhang, X. Wang, and C. Xu, “Weakly supervised contrastive learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10 042–10 051.
  15. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.
  16. R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440–1448.
  17. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
  18. K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.
  19. J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolutional networks,” Advances in neural information processing systems, vol. 29, 2016.
  20. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
  21. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  22. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14.   Springer, 2016, pp. 21–37.
  23. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  24. H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 734–750.
  25. K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint triplets for object detection,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6569–6578.
  26. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European conference on computer vision.   Springer, 2020, pp. 213–229.
  27. X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr: Deformable transformers for end-to-end object detection,” arXiv preprint arXiv:2010.04159, 2020.
  28. J. Pang, C. Li, J. Shi, Z. Xu, and H. Feng, “R2-cnn: Fast tiny object detection in large-scale remote sensing images.” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5512–5524, 2019.
  29. M. Hong, S. Li, Y. Yang, F. Zhu, Q. Zhao, and L. Lu, “Sspnet: Scale selection pyramid network for tiny person detection from uav images,” IEEE geoscience and remote sensing letters, vol. 19, pp. 1–5, 2021.
  30. X. Yang, J. Yang, J. Yan, Y. Zhang, T. Zhang, Z. Guo, X. Sun, and K. Fu, “Scrdet: Towards more robust detection for small, cluttered and rotated objects,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 8232–8241.
  31. W. Guo, W. Yang, H. Zhang, and G. Hua, “Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network,” Remote Sensing, vol. 10, no. 1, p. 131, 2018.
  32. G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7405–7415, 2016.
  33. K. Li, G. Cheng, S. Bu, and X. You, “Rotation-insensitive and context-augmented object detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 4, pp. 2337–2348, 2017.
  34. Z. Liu, J. Hu, L. Weng, and Y. Yang, “Rotated region based cnn for ship detection,” in 2017 IEEE International Conference on Image Processing (ICIP).   IEEE, 2017, pp. 900–904.
  35. P. Zhao, Z. Qu, Y. Bu, W. Tan, and Q. Guan, “Polardet: A fast, more precise detector for rotated target in aerial images,” International Journal of Remote Sensing, vol. 42, no. 15, pp. 5831–5861, 2021.
  36. J. Han, J. Ding, J. Li, and G.-S. Xia, “Align deep features for oriented object detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2021.
  37. R. Nabati and H. Qi, “Rrpn: Radar region proposal network for object detection in autonomous vehicles,” in 2019 IEEE International Conference on Image Processing (ICIP).   IEEE, 2019, pp. 3093–3097.
  38. K. Fu, Z. Chang, Y. Zhang, G. Xu, K. Zhang, and X. Sun, “Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 161, pp. 294–308, 2020.
  39. B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, “Few-shot object detection via feature reweighting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8420–8429.
  40. X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin, “Meta r-cnn: Towards general solver for instance-level low-shot learning,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9577–9586.
  41. Y. Xiao, V. Lepetit, and R. Marlet, “Few-shot object detection and viewpoint estimation for objects in the wild,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3090–3106, 2022.
  42. Y.-X. Wang, D. Ramanan, and M. Hebert, “Meta-learning to detect rare objects,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9925–9934.
  43. G. Zhang, Z. Luo, K. Cui, and S. Lu, “Meta-detr: Few-shot object detection via unified image-level meta-learning,” arXiv preprint arXiv:2103.11731, vol. 2, no. 6, 2021.
  44. X. Wang, T. E. Huang, T. Darrell, J. E. Gonzalez, and F. Yu, “Frustratingly simple few-shot object detection,” arXiv preprint arXiv:2003.06957, 2020.
  45. J. Wu, S. Liu, D. Huang, and Y. Wang, “Multi-scale positive sample refinement for few-shot object detection,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16.   Springer, 2020, pp. 456–472.
  46. B. Sun, B. Li, S. Cai, Y. Yuan, and C. Zhang, “Fsce: Few-shot object detection via contrastive proposal encoding,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7352–7362.
  47. Z. Fan, Y. Ma, Z. Li, and J. Sun, “Generalized few-shot object detection without forgetting,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4527–4536.
  48. L. Qiao, Y. Zhao, Z. Li, X. Qiu, J. Wu, and C. Zhang, “Defrcn: Decoupled faster r-cnn for few-shot object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 8681–8690.
  49. Y. Cao, J. Wang, Y. Jin, T. Wu, K. Chen, Z. Liu, and D. Lin, “Few-shot object detection via association and discrimination,” Advances in neural information processing systems, vol. 34, pp. 16 570–16 581, 2021.
  50. X. Li, J. Deng, and Y. Fang, “Few-shot object detection on remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  51. G. Cheng, B. Yan, P. Shi, K. Li, X. Yao, L. Guo, and J. Han, “Prototype-cnn for few-shot object detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2021.
  52. S. Wolf, J. Meier, L. Sommer, and J. Beyerer, “Double head predictor based few-shot object detection for aerial imagery,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 721–731.
  53. F. Zhang, Y. Shi, Z. Xiong, and X. X. Zhu, “Few-shot object detection in remote sensing: Lifting the curse of incompletely annotated novel objects,” IEEE Transactions on Geoscience and Remote Sensing, 2024.
  54. J. Li, P. Zhou, C. Xiong, and S. C. Hoi, “Prototypical contrastive learning of unsupervised representations,” arXiv preprint arXiv:2005.04966, 2020.
  55. S. Otsuki, S. Ishikawa, and K. Sugiura, “Prototypical contrastive transfer learning for multimodal language understanding,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 25–32.
  56. L. Ouyang, G. Guo, L. Fang, P. Ghamisi, and J. Yue, “Pcldet: Prototypical contrastive learning for fine-grained object detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  57. R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing help?” Advances in neural information processing systems, vol. 32, 2019.
  58. G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton, “Regularizing neural networks by penalizing confident output distributions,” arXiv preprint arXiv:1701.06548, 2017.
  59. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015.
  60. H. Wang and Z.-H. Deng, “Contrastive prototypical network with wasserstein confidence penalty,” in European Conference on Computer Vision.   Springer, 2022, pp. 665–682.
  61. C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio, “Learning with a wasserstein loss,” Advances in neural information processing systems, vol. 28, 2015.
  62. J. Wang, C. Xu, W. Yang, and L. Yu, “A normalized gaussian wasserstein distance for tiny object detection,” arXiv preprint arXiv:2110.13389, 2021.
  63. Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image retrieval,” International journal of computer vision, vol. 40, pp. 99–121, 2000.
  64. A. Ramdas, N. García Trillos, and M. Cuturi, “On wasserstein two-sample testing and related families of nonparametric tests,” Entropy, vol. 19, no. 2, p. 47, 2017.
  65. J. Altschuler, J. Niles-Weed, and P. Rigollet, “Near-linear time approximation algorithms for optimal transport via sinkhorn iteration,” Advances in neural information processing systems, vol. 30, 2017.
  66. M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” Advances in neural information processing systems, vol. 26, 2013.
  67. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Research, vol. 9, no. 11, 2008.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com