Hydrodynamics of thermal active matter (2405.11023v2)
Abstract: Active matter concerns many-body systems comprised of living or self-driven agents that collectively exhibit macroscopic phenomena distinct from conventional passive matter. Using Schwinger-Keldysh effective field theory, we develop a novel hydrodynamic framework for thermal active matter that accounts for energy balance, local temperature variations, and the ensuing stochastic effects. By modelling active matter as a driven open system, we show that the source of active contributions to hydrodynamics, violations of fluctuation-dissipation theorems, and detailed balance is rooted in the breaking of time-translation symmetry due to the presence of fuel consumption and an external environmental bath. In addition, our framework allows for non-equilibrium steady states that produce entropy, with a well-defined notion of steady-state temperature. We use our framework of active hydrodynamics to develop effective field theory actions for active superfluids and active nematics that offer a first-principle derivation of various active transport coefficients and feature activity-induced phase transitions. We also show how to incorporate temperature, energy and noise in fluctuating hydrodynamics for active matter. Our work suggests a broader perspective on active matter that can leave an imprint across scales.
- E. Schrodinger, What is life?: the physical aspect of the living cell (The Macmillan company, 1946).
- J. Toner, Y. Tu, and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals of Physics 318, 170 (2005).
- J. Joanny and J. Prost, Active gels as a description of the actin-myosin cytoskeleton, HFSP Journal 3, 94 (2009), pMID: 19794818, https://doi.org/10.2976/1.3054712 .
- R. Alert, J.-F. Joanny, and J. Casademunt, Universal scaling of active nematic turbulence, Nature Physics 16, 682–688 (2020).
- R. Alert, J. Casademunt, and J.-F. Joanny, Active turbulence, Annual Review of Condensed Matter Physics 13, 143 (2022).
- R. Aditi Simha and S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles, Phys. Rev. Lett. 89, 058101 (2002).
- S. Ramaswamy and M. Rao, Active-filament hydrodynamics: instabilities, boundary conditions and rheology, New Journal of Physics 9, 423 (2007).
- F. Jülicher, J. Prost, and J. Toner, Broken living layers: Dislocations in active smectic liquid crystals, Phys. Rev. E 106, 054607 (2022), arXiv:2207.04562 [cond-mat.soft] .
- D. Yamada, T. Hondou, and M. Sano, Coherent dynamics of an asymmetric particle in a vertically vibrating bed, Phys. Rev. E 67, 040301 (2003).
- L. Pitaevskii and E. Lifshitz, Physical Kinetics: Volume 10, v. 10 (Elsevier Science, 2012).
- J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38, 1113 (1999), arXiv:hep-th/9711200 .
- G. Policastro, D. T. Son, and A. O. Starinets, The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87, 081601 (2001), arXiv:hep-th/0104066 .
- F. Julicher, S. W. Grill, and G. Salbreux, Hydrodynamic theory of active matter, Reports on Progress in Physics 81, 076601 (2018).
- M. J. Landry, Active actions: effective field theory for active nematics, arXiv e-prints , arXiv:2309.15142 (2023), arXiv:2309.15142 [cond-mat.soft] .
- A. C. Callan-Jones and F. Jülicher, Hydrodynamics of active permeating gels, New Journal of Physics 13, 093027 (2011).
- P. Matus, R. Lier, and P. Surówka, Molecular modelling of odd viscoelastic fluids (2024), arXiv:2310.15251 [cond-mat.soft] .
- L. Onsager, Reciprocal Relations in Irreversible Processes. I., Physical Review 37, 405 (1931a).
- L. Onsager, Reciprocal Relations in Irreversible Processes. II., Physical Review 38, 2265 (1931b).
- L. Landau, E. Lifshitz, and L. Pitaevski\̆text{i}, Statistical Physics, Course of theoretical physics No. pt. 2 (Pergamon Press, 1980).
- E. Wang and U. W. Heinz, A Generalized fluctuation dissipation theorem for nonlinear response functions, Phys. Rev. D 66, 025008 (2002), arXiv:hep-th/9809016 .
- A. Amoretti, D. K. Brattan, and L. Martinoia, Thermodynamic constraints on polar active matter hydrodynamics, preprint (2024), arXiv:2405.02283 [cond-mat.stat-mech] .
- E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics 72, 096601 (2009).
- H. Berg, E. coli in Motion, Biological and Medical Physics, Biomedical Engineering (Springer, 2004).
- J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers—single particle motion and collective behavior: a review, Reports on Progress in Physics 78, 056601 (2015).
- L. V. Delacrétaz, B. Goutéraux, and V. Ziogas, Damping of Pseudo-Goldstone Fields, Phys. Rev. Lett. 128, 141601 (2022), arXiv:2111.13459 [hep-th] .
- J. Armas and E. Have, Ideal fracton superfluids, SciPost Phys. 16, 039 (2024), arXiv:2304.09596 [hep-th] .
- S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91, 105031 (2015), arXiv:1305.3670 [hep-th] .
- M. Harder, P. Kovtun, and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP 07 (07), 025, arXiv:1502.03076 [hep-th] .
- M. Crossley, P. Glorioso, and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (09), 095, arXiv:1511.03646 [hep-th] .
- F. M. Haehl, R. Loganayagam, and M. Rangamani, Topological sigma models & dissipative hydrodynamics, JHEP 04 (04), 039, arXiv:1511.07809 [hep-th] .
- K. Jensen, N. Pinzani-Fokeeva, and A. Yarom, Dissipative hydrodynamics in superspace, JHEP 09 (09), 127, arXiv:1701.07436 [hep-th] .
- H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoS TASI2017, 008 (2018), arXiv:1805.09331 [hep-th] .
- G. E. Crooks, Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems, Journal of Statistical Physics 90, 1481 (1998).
- G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60, 2721 (1999).
- J. Prost, J.-F. Joanny, and J. M. R. Parrondo, Generalized fluctuation-dissipation theorem for steady-state systems, Phys. Rev. Lett. 103, 090601 (2009).
- L. Landau and E. Lifshitz, Fluid Mechanics, Teoreticheskaia fizika (Pergamon Press, 1959).
- P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, preprint (2016), arXiv:1612.07705 [hep-th] .
- R. C. Tolman, Duration of Molecules in Upper Quantum States, Phys. Rev. 23, 693 (1924).
- R. Tolman, The Principles of Statistical Mechanics, Dover Books on Physics (Dover Publications, 1979).
- S. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover Books on Physics (Dover Publications, 2013).
- D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, 1987).
- X. Chen-Lin, L. V. Delacretaz, and S. A. Hartnoll, Theory of diffusive fluctuations, Phys. Rev. Lett. 122, 091602 (2019), arXiv:1811.12540 [hep-th] .
- A. Jain and P. Kovtun, Late Time Correlations in Hydrodynamics: Beyond Constitutive Relations, Phys. Rev. Lett. 128, 071601 (2022), arXiv:2009.01356 [hep-th] .
- R. Großmann, F. Peruani, and M. Bär, Mesoscale pattern formation of self-propelled rods with velocity reversal, Phys. Rev. E 94, 050602 (2016).
- A. Jain, Effective field theory for non-relativistic hydrodynamics, JHEP 10 (10), 208, arXiv:2008.03994 [hep-th] .
- P. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics (Clarendon Press, 1993).
- P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics, edited by P. M. Chaikin and T. C. Lubensky (1995).
- S. Mishra, R. Aditi Simha, and S. Ramaswamy, A dynamic renormalization group study of active nematics, Journal of Statistical Mechanics: Theory and Experiment 2010, 02003 (2010), arXiv:0912.2283 [cond-mat.soft] .
- A. Beris and B. Edwards, Thermodynamics of Flowing Systems: with Internal Microstructure, Oxford Engineering Science Series (Oxford University Press, 1994).
- A. Lucas and K. C. Fong, Hydrodynamics of electrons in graphene, J. Phys. Condens. Matter 30, 053001 (2018), arXiv:1710.08425 [cond-mat.str-el] .
- J. Armas and A. Jain, Effective field theory for hydrodynamics without boosts, SciPost Phys. 11, 054 (2021), arXiv:2010.15782 [hep-th] .
- I. Novak, J. Sonner, and B. Withers, Hydrodynamics without boosts, JHEP 07 (07), 165, arXiv:1911.02578 [hep-th] .
- E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie), Annales Sci. Ecole Norm. Sup. 40, 325 (1923).
- E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie) (Suite)., Annales Sci. Ecole Norm. Sup. 41, 1 (1924).
- K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (04), 123, arXiv:1411.7024 [hep-th] .
- K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, SciPost Phys. 5, 011 (2018), arXiv:1408.6855 [hep-th] .
- E. A. Bergshoeff, J. Hartong, and J. Rosseel, Torsional Newton–Cartan geometry and the Schrodinger algebra, Class. Quant. Grav. 32, 135017 (2015), arXiv:1409.5555 [hep-th] .
- M. L. Bellac, Thermal Field Theory, edited by M. L. Bellac, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
- C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690 (1997).
- C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach, Phys. Rev. E 56, 5018 (1997), arXiv:cond-mat/9707325 [cond-mat.stat-mech] .
- H. Stark and T. C. Lubensky, Poisson-bracket approach to the dynamics of nematic liquid crystals, Phys. Rev. E 67, 061709 (2003).