Describing the critical behavior of the Anderson transition in infinite dimension by random-matrix ensembles: logarithmic multifractality and critical localization (2405.10975v1)
Abstract: Due to their analytical tractability, random matrix ensembles serve as robust platforms for exploring exotic phenomena in systems that are computationally demanding. Building on a companion letter [arXiv:2312.17481], this paper investigates two random matrix ensembles tailored to capture the critical behavior of the Anderson transition in infinite dimension, employing both analytical techniques and extensive numerical simulations. Our study unveils two types of critical behaviors: logarithmic multifractality and critical localization. In contrast to conventional multifractality, the novel logarithmic multifractality features eigenstate moments scaling algebraically with the logarithm of the system size. Critical localization, characterized by eigenstate moments of order $q>1/2$ converging to a finite value indicating localization, exhibits characteristic logarithmic finite-size or time effects, consistent with the critical behavior observed in random regular and Erd\"os-R\'enyi graphs of effective infinite dimensionality. Using perturbative methods, we establish the existence of logarithmic multifractality and critical localization in our models. Furthermore, we explore the emergence of novel scaling behaviors in the time dynamics and spatial correlation functions. Our models provide a valuable framework for studying infinite-dimensional quantum disordered systems, and the universality of our findings enables broad applicability to systems with pronounced finite-size effects and slow dynamics, including the contentious many-body localization transition, akin to the Anderson transition in infinite dimension.
- M. L. Mehta, Random matrices (Elsevier, 2004).
- O. Bohigas and H. A. Weidenmuller, Aspects of chaos in nuclear physics, Annual Review of Nuclear and Particle Science 38, 421 (1988).
- A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Advances in Physics 65, 239 (2016).
- C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69, 731 (1997).
- B. Collins and I. Nechita, Random matrix techniques in quantum information theory, Journal of Mathematical Physics 57, 015215 (2015).
- O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Phys. Rev. Lett. 52, 1 (1984).
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10, 2083 (1977).
- T. Guhr, A. Müller–Groeling, and H. A. Weidenmüller, Random-matrix theories in quantum physics: common concepts, Phys. Rep. 299, 189 (1998).
- F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).
- E. Abrahams, 50 years of Anderson Localization, Vol. 24 (world scientific, 2010).
- T. Ohtsuki and T. Kawarabayashi, Anomalous Diffusion at the Anderson Transitions, Journal of the Physical Society of Japan 66, 314 (1997).
- C. A. Müller, D. Delande, and B. Shapiro, Critical dynamics at the Anderson localization mobility edge, Phys. Rev. A 94, 033615 (2016).
- P. Akridas-Morel, N. Cherroret, and D. Delande, Multifractality of the kicked rotor at the critical point of the Anderson transition, Phys. Rev. A 100, 043612 (2019).
- W. Chen, G. Lemarié, and J. Gong, Critical dynamics of long-range quantum disordered systems, Phys. Rev. E 108, 054127 (2023a).
- C. Castellani and L. Peliti, Multifractal wavefunction at the localisation threshold, J. Phys. A 19, L429 (1986).
- A. Rodriguez, L. J. Vasquez, and R. A. Römer, Multifractal Analysis with the Probability Density Function at the Three-Dimensional Anderson Transition, Phys. Rev. Lett. 102, 106406 (2009).
- E. Tarquini, G. Biroli, and M. Tarzia, Critical properties of the Anderson localization transition and the high-dimensional limit, Phys. Rev. B 95, 094204 (2017).
- M. Schreiber and H. Grussbach, Dimensionality Dependence of the Metal-Insulator Transition in the Anderson Model of Localization, Phys. Rev. Lett. 76, 1687 (1996).
- A. M. García-García and E. Cuevas, Dimensional dependence of the metal-insulator transition, Phys. Rev. B 75, 174203 (2007).
- Y. Ueoka and K. Slevin, Dimensional Dependence of Critical Exponent of the Anderson Transition in the Orthogonal Universality Class, Journal of the Physical Society of Japan 83, 084711 (2014).
- P. Sierant, D. Delande, and J. Zakrzewski, Thouless Time Analysis of Anderson and Many-Body Localization Transitions, Phys. Rev. Lett. 124, 186601 (2020).
- B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of fluid Mechanics 62, 331 (1974).
- B. B. Mandelbrot and B. B. Mandelbrot, The fractal geometry of nature, Vol. 1 (WH freeman New York, 1982).
- K. Falconer, Fractal geometry: mathematical foundations and applications (John Wiley & Sons, 2004).
- F. J. Wegner, Disordered system with n𝑛nitalic_n orbitals per site: n=∞𝑛n=\inftyitalic_n = ∞ limit, Phys. Rev. B 19, 783 (1979).
- K. Efetov, Supersymmetry and theory of disordered metals, Advances in Physics 32, 53 (1983).
- Y. V. Fyodorov and A. D. Mirlin, Localization in ensemble of sparse random matrices, Phys. Rev. Lett. 67, 2049 (1991a).
- Y. V. Fyodorov and A. D. Mirlin, Scaling properties of localization in random band matrices: A σ𝜎\sigmaitalic_σ-model approach, Phys. Rev. Lett. 67, 2405 (1991b).
- A. D. Mirlin and F. Evers, Multifractality and critical fluctuations at the Anderson transition, Phys. Rev. B 62, 7920 (2000).
- M. R. Zirnbauer, Wegner model in high dimension: U(1) symmetry breaking and a non-standard phase of disordered electronic matter, i. one-replica theory (2023), arXiv:2309.17323 [cond-mat.dis-nn] .
- B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52, 263 (1979).
- F. M. Izrailev, Simple models of quantum chaos: Spectrum and eigenfunctions, Phys. Rep. 196, 299 (1990).
- E. Bogomolny, O. Giraud, and C. Schmit, Random Matrix Ensembles Associated with Lax Matrices, Phys. Rev. Lett. 103, 054103 (2009).
- E. Bogomolny and O. Giraud, Perturbation approach to multifractal dimensions for certain critical random-matrix ensembles, Phys. Rev. E 84, 036212 (2011).
- E. Bogomolny and O. Giraud, Multifractal dimensions for all moments for certain critical random-matrix ensembles in the strong multifractality regime, Phys. Rev. E 85, 046208 (2012).
- E. Bogomolny, O. Giraud, and C. Schmit, Integrable random matrix ensembles, Nonlinearity 24, 3179 (2011).
- L. S. Levitov, Absence of Localization of Vibrational Modes Due to Dipole-Dipole Interaction, Europhys. Lett. 9, 83 (1989).
- L. S. Levitov, Delocalization of vibrational modes caused by electric dipole interaction, Phys. Rev. Lett. 64, 547 (1990).
- C. Monthus and T. Garel, The Anderson localization transition with long-ranged hoppings: analysis of the strong multifractality regime in terms of weighted Lévy sums, J. Stat. Mech. 2010, P09015 (2010).
- C. Yeung and Y. Oono, A Conjecture on Nonlocal Random Tight-Binding Models, Europhys. Lett. 4, 1061 (1987).
- G. Casati and T. Prosen, The quantum mechanics of chaotic billiards, Physica D 131, 293 (1999), classical Chaos and its Quantum Manifestations.
- V. E. Kravtsov, O. Yevtushenko, and E. Cuevas, Level compressibility in a critical random matrix ensemble: the second virial coefficient, J. Phys. A 39, 2021 (2006).
- V. E. Kravtsov, A. Ossipov, and O. M. Yevtushenko, Return probability and scaling exponents in the critical random matrix ensemble, J. Phys. A 44, 305003 (2011).
- M. R. Zirnbauer, Localization transition on the Bethe lattice, Phys. Rev. B 34, 6394 (1986a).
- M. R. Zirnbauer, Anderson localization and non-linear sigma model with graded symmetry, Nuclear Physics B 265, 375 (1986b).
- C. Monthus and T. Garel, Anderson localization on the Cayley tree: multifractal statistics of the transmission at criticality and off criticality, J. Phys. A 44, 145001 (2011).
- K. S. Tikhonov, A. D. Mirlin, and M. A. Skvortsov, Anderson localization and ergodicity on random regular graphs, Phys. Rev. B 94, 220203 (2016).
- K. S. Tikhonov and A. D. Mirlin, Fractality of wave functions on a Cayley tree: Difference between tree and locally treelike graph without boundary, Phys. Rev. B 94, 184203 (2016).
- M. Sonner, K. S. Tikhonov, and A. D. Mirlin, Multifractality of wave functions on a Cayley tree: From root to leaves, Phys. Rev. B 96, 214204 (2017).
- G. Biroli and M. Tarzia, Delocalized glassy dynamics and many-body localization, Phys. Rev. B 96, 201114 (2017).
- V. Kravtsov, B. Altshuler, and L. Ioffe, Non-ergodic delocalized phase in Anderson model on Bethe lattice and regular graph, Annals of Physics 389, 148 (2018a).
- K. S. Tikhonov and A. D. Mirlin, Critical behavior at the localization transition on random regular graphs, Phys. Rev. B 99, 214202 (2019a).
- K. S. Tikhonov and A. D. Mirlin, Statistics of eigenstates near the localization transition on random regular graphs, Phys. Rev. B 99, 024202 (2019b).
- S. Roy and D. E. Logan, Localization on Certain Graphs with Strongly Correlated Disorder, Phys. Rev. Lett. 125, 250402 (2020).
- G. Biroli, A. K. Hartmann, and M. Tarzia, Critical behavior of the Anderson model on the Bethe lattice via a large-deviation approach, Phys. Rev. B 105, 094202 (2022).
- K. Tikhonov and A. Mirlin, From Anderson localization on random regular graphs to many-body localization, Annals of Physics 435, 168525 (2021), special Issue on Localisation 2020.
- Y. Fyodorov, A. Mirlin, and H.-J. Sommers, A novel field theoretical approach to the Anderson localization: sparse random hopping model, Journal de Physique I 2, 1571 (1992).
- A. D. Mirlin and Y. V. Fyodorov, Universality of level correlation function of sparse random matrices, J. Phys. A 24, 2273 (1991).
- T. Scoquart, I. V. Gornyi, and A. D. Mirlin, The role of Fock-space correlations in many-body localization (2024), arXiv:2402.10123 [cond-mat.dis-nn] .
- G. Biroli, A. K. Hartmann, and M. Tarzia, Large-deviation analysis of rare resonances for the many-body localization transition (2023), arXiv:2312.14873 [cond-mat.dis-nn] .
- I. A. Gruzberg, A. D. Mirlin, and M. R. Zirnbauer, Classification and symmetry properties of scaling dimensions at Anderson transitions, Phys. Rev. B 87, 125144 (2013).
- G. Biroli and M. Tarzia, Delocalization and ergodicity of the Anderson model on Bethe lattices, arXiv preprint arXiv:1810.07545 (2018).
- P. Sierant, M. Lewenstein, and A. Scardicchio, Universality in Anderson localization on random graphs with varying connectivity, SciPost Phys. 15, 045 (2023).
- M. Pino and J. E. Roman, Correlated volumes for extended wavefunctions on a random-regular graph, arXiv preprint arXiv:2311.07690 (2023).
- M. Pino, Scaling up the anderson transition in random-regular graphs, Physical Review Research 2, 042031 (2020).
- P. von Soosten and S. Warzel, Non-ergodic delocalization in the Rosenzweig–Porter model, Letters in Mathematical Physics 109, 905 (2019).
- K. Truong and A. Ossipov, Eigenvectors under a generic perturbation: Non-perturbative results from the random matrix approach, Europhys. Lett. 116, 37002 (2016).
- E. Bogomolny and M. Sieber, Eigenfunction distribution for the Rosenzweig-Porter model, Phys. Rev. E 98, 032139 (2018).
- C. Monthus, Multifractality of eigenstates in the delocalized non-ergodic phase of some random matrix models: Wigner–Weisskopf approach, J. Phys. A 50, 295101 (2017).
- M. Amini, Spread of wave packets in disordered hierarchical lattices, Europhys. Lett. 117, 30003 (2017).
- G. Biroli and M. Tarzia, Lévy-Rosenzweig-Porter random matrix ensemble, Phys. Rev. B 103, 104205 (2021).
- I. M. Khaymovich and V. E. Kravtsov, Dynamical phases in a “multifractal” Rosenzweig-Porter model, SciPost Phys. 11, 045 (2021).
- N. Macé, F. Alet, and N. Laflorencie, Multifractal Scalings Across the Many-Body Localization Transition, Phys. Rev. Lett. 123, 180601 (2019).
- W. De Roeck and F. m. c. Huveneers, Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B 95, 155129 (2017).
- D. Sels, Bath-induced delocalization in interacting disordered spin chains, Phys. Rev. B 106, L020202 (2022).
- F. Weiner, F. Evers, and S. Bera, Slow dynamics and strong finite-size effects in many-body localization with random and quasiperiodic potentials, Phys. Rev. B 100, 104204 (2019).
- D. Sels and A. Polkovnikov, Dynamical obstruction to localization in a disordered spin chain, Phys. Rev. E 104, 054105 (2021).
- D. J. Luitz and Y. B. Lev, Absence of slow particle transport in the many-body localized phase, Phys. Rev. B 102, 100202 (2020).
- J. V. José, 40 Years of Berezinskii–Kosterlitz–Thouless Theory (WORLD SCIENTIFIC, 2013) https://www.worldscientific.com/doi/pdf/10.1142/8572 .
- H. Weber and P. Minnhagen, Monte carlo determination of the critical temperature for the two-dimensional xy model, Phys. Rev. B 37, 5986 (1988).
- Y.-D. Hsieh, Y.-J. Kao, and A. W. Sandvik, Finite-size scaling method for the berezinskii–kosterlitz–thouless transition, J. Stat. Mech. 2013, P09001 (2013).
- A. Chen, J. Maciejko, and I. Boettcher, Anderson localization transition in disordered hyperbolic lattices (2023c), arXiv:2310.07978 [cond-mat.dis-nn] .
- M. E. Cates and J. M. Deutsch, Spatial correlations in multifractals, Phys. Rev. A 35, 4907 (1987).
- V. Kravtsov, B. Altshuler, and L. Ioffe, Non-ergodic delocalized phase in Anderson model on Bethe lattice and regular graph, Annals of Physics 389, 148 (2018b).
- A. M. García-García and J. Wang, Anderson Transition in Quantum Chaos, Phys. Rev. Lett. 94, 244102 (2005).
- E. Cuevas, V. Gasparian, and M. Ortuño, Anomalously Large Critical Regions in Power-Law Random Matrix Ensembles, Phys. Rev. Lett. 87, 056601 (2001).
- G. D. Birkhoff, Proof of the ergodic theorem, Proceedings of the National Academy of Sciences 17, 656 (1931).
- D. R. Grempel, R. E. Prange, and S. Fishman, Quantum dynamics of a nonintegrable system, Phys. Rev. A 29, 1639 (1984).
- D. J. Luitz, Polynomial filter diagonalization of large Floquet unitary operators, SciPost Phys. 11, 021 (2021).
- F. Evers and A. D. Mirlin, Fluctuations of the inverse participation ratio at the anderson transition, Phys. Rev. Lett. 84, 3690 (2000).
- V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007).
- I. Varga and D. Braun, Critical statistics in a power-law random-banded matrix ensemble, Phys. Rev. B 61, R11859 (2000).
- R. Ketzmerick, G. Petschel, and T. Geisel, Slow decay of temporal correlations in quantum systems with Cantor spectra, Phys. Rev. Lett. 69, 695 (1992).
- J. Chalker, Scaling and eigenfunction correlations near a mobility edge, Physica A: Statistical Mechanics and its Applications 167, 253 (1990).
- J. Z. Imbrie, Diagonalization and many-body localization for a disordered quantum spin chain, Phys. Rev. Lett. 117, 027201 (2016).
- J. Z. Imbrie, V. Ros, and A. Scardicchio, Local integrals of motion in many-body localized systems, Annalen der Physik 529, 1600278 (2017).
- R. Wong and J. Lin, Asymptotic expansions of Fourier transforms of functions with logarithmic singularities, Journal of Mathematical Analysis and Applications 64, 173 (1978).