Variational Quantum Algorithm Landscape Reconstruction by Low-Rank Tensor Completion (2405.10941v2)
Abstract: Variational quantum algorithms (VQAs) are a broad class of algorithms with many applications in science and industry. Applying a VQA to a problem involves optimizing a parameterized quantum circuit by maximizing or minimizing a cost function. A particular challenge associated with VQAs is understanding the properties of associated cost functions. Having the landscapes of VQA cost functions can greatly assist in developing and testing new variational quantum algorithms, but they are extremely expensive to compute. Reconstructing the landscape of a VQA using existing techniques requires a large number of cost function evaluations, especially when the dimension or the resolution of the landscape is high. To address this challenge, we propose a low-rank tensor-completion-based approach for local landscape reconstruction. By leveraging compact low-rank representations of tensors, our technique can overcome the curse of dimensionality and handle high-resolution landscapes. We demonstrate the power of landscapes in VQA development by showcasing practical applications of analyzing penalty terms for constrained optimization problems and examining the probability landscapes of certain basis states.
- A. M. Dalzell, S. McArdle, M. Berta, P. Bienias, C.-F. Chen, A. Gilyén, C. T. Hann, M. J. Kastoryano, E. T. Khabiboulline, A. Kubica, G. Salton, S. Wang, and F. G. S. L. Brandão, “Quantum algorithms: A survey of applications and end-to-end complexities,” arXiv:2310.03011, 2023.
- D. Herman, C. Googin, X. Liu, Y. Sun, A. Galda, I. Safro, M. Pistoia, and Y. Alexeev, “Quantum computing for finance,” Nature Reviews Physics, vol. 5, no. 8, pp. 450–465, 2023.
- M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021.
- Z. He, R. Shaydulin, S. Chakrabarti, D. Herman, C. Li, Y. Sun, and M. Pistoia, “Alignment between initial state and mixer improves QAOA performance for constrained optimization,” npj Quantum Information, vol. 9, no. 1, p. 121, 2023.
- Z. He, B. Peng, Y. Alexeev, and Z. Zhang, “Distributionally robust variational quantum algorithms with shifted noise,” arXiv preprint arXiv:2308.14935, 2023.
- T. Hao, R. Shaydulin, M. Pistoia, and J. Larson, “Exploiting in-constraint energy in constrained variational quantum optimization,” in 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS). IEEE, 2022, pp. 100–106.
- R. Shaydulin, P. C. Lotshaw, J. Larson, J. Ostrowski, and T. S. Humble, “Parameter transfer for quantum approximate optimization of weighted MaxCut,” ACM Transactions on Quantum Computing, vol. 4, no. 3, pp. 1–15, feb 2023.
- R. Shaydulin, I. Safro, and J. Larson, “Multistart methods for quantum approximate optimization,” in IEEE High Performance Extreme Computing Conference, 2019.
- S. H. Sureshbabu, D. Herman, R. Shaydulin, J. Basso, S. Chakrabarti, Y. Sun, and M. Pistoia, “Parameter setting in quantum approximate optimization of weighted problems,” Quantum, vol. 8, p. 1231, 2024.
- X. Liu, A. Angone, R. Shaydulin, I. Safro, Y. Alexeev, and L. Cincio, “Layer VQE: A variational approach for combinatorial optimization on noisy quantum computers,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–20, 2022.
- T. Hao, K. Liu, and S. Tannu, “Enabling high performance debugging for variational quantum algorithms using compressed sensing,” in Proceedings of the 50th Annual International Symposium on Computer Architecture, 2023, pp. 1–13.
- M. S. Rudolph, S. Sim, A. Raza, M. Stechly, J. R. McClean, E. R. Anschuetz, L. Serrano, and A. Perdomo-Ortiz, “ORQVIZ: Visualizing high-dimensional landscapes in variational quantum algorithms,” arXiv preprint arXiv:2111.04695, 2021.
- A. Pérez-Salinas, H. Wang, and X. Bonet-Monroig, “Analyzing variational quantum landscapes with information content,” npj Quantum Information, vol. 10, no. 1, p. 27, 2024.
- H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural nets,” Advances in neural information processing systems, vol. 31, 2018.
- E. Fontana, I. Rungger, R. Duncan, and C. Cîrstoiu, “Efficient recovery of variational quantum algorithms landscapes using classical signal processing,” arXiv preprint arXiv:2208.05958, 2022.
- J. Lee, A. B. Magann, H. A. Rabitz, and C. Arenz, “Progress toward favorable landscapes in quantum combinatorial optimization,” Physical Review A, vol. 104, no. 3, p. 032401, 2021.
- J. Kim and Y. Oz, “Quantum energy landscape and circuit optimization,” Physical Review A, vol. 106, no. 5, p. 052424, 2022.
- J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, “Barren plateaus in quantum neural network training landscapes,” Nature communications, vol. 9, no. 1, p. 4812, 2018.
- E. Fontana, D. Herman, S. Chakrabarti, N. Kumar, R. Yalovetzky, J. Heredge, S. H. Sureshbabu, and M. Pistoia, “The adjoint is all you need: Characterizing barren plateaus in quantum ansätze,” arXiv:2309.07902, 2023.
- A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature communications, vol. 5, no. 1, p. 4213, 2014.
- P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis, A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo et al., “Quantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wave-function expansions,” Physical Review A, vol. 98, no. 2, p. 022322, 2018.
- T. Hogg and D. Portnov, “Quantum optimization,” Information Sciences, vol. 128, no. 3–4, p. 181–197, Oct. 2000.
- E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv:1411.4028, 2014.
- S. Boulebnane and A. Montanaro, “Solving Boolean satisfiability problems with the quantum approximate optimization algorithm,” arXiv:2208.06909, 2022.
- R. Shaydulin, C. Li, S. Chakrabarti, M. DeCross, D. Herman, N. Kumar, J. Larson, D. Lykov, P. Minssen, Y. Sun et al., “Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem,” arXiv preprint arXiv:2308.02342, 2023.
- R. Orús, “A practical introduction to tensor networks: Matrix product states and projected entangled pair states,” Annals of physics, vol. 349, pp. 117–158, 2014.
- G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Physical review letters, vol. 91, no. 14, p. 147902, 2003.
- C. Ibrahim, D. Lykov, Z. He, Y. Alexeev, and I. Safro, “Constructing optimal contraction trees for tensor network quantum circuit simulation,” in 2022 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2022, pp. 1–8.
- Z. He and Z. Zhang, “High-dimensional uncertainty quantification via tensor regression with rank determination and adaptive sampling,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 9, pp. 1317–1328, 2021.
- Y. Pang, T. Hao, A. Dugad, Y. Zhou, and E. Solomonik, “Efficient 2D tensor network simulation of quantum systems,” in International conference for high performance computing, networking, storage and analysis. IEEE, 2020, pp. 1–14.
- T. Hao, X. Huang, C. Jia, and C. Peng, “A quantum-inspired tensor network algorithm for constrained combinatorial optimization problems,” Frontiers in Physics, vol. 10, p. 906590, 2022.
- I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.
- U. Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of physics, vol. 326, no. 1, pp. 96–192, 2011.
- L. Grasedyck, M. Kluge, and S. Kramer, “Variants of alternating least squares tensor completion in the tensor train format,” SIAM Journal on Scientific Computing, vol. 37, no. 5, pp. A2424–A2450, 2015.
- A. Chertkov, G. Ryzhakov, and I. Oseledets, “Black box approximation in the tensor train format initialized by ANOVA decomposition,” SIAM Journal on Scientific Computing, vol. 45, no. 4, pp. A2101–A2118, 2023.
- L. Yuan, Q. Zhao, L. Gui, and J. Cao, “High-order tensor completion via gradient-based optimization under tensor train format,” Signal Processing: Image Communication, vol. 73, pp. 53–61, 2019.
- M. Steinlechner, “Riemannian optimization for high-dimensional tensor completion,” SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. S461–S484, 2016.
- J. Wurtz and D. Lykov, “Fixed-angle conjectures for the quantum approximate optimization algorithm on regular MaxCut graphs,” Physical Review A, vol. 104, no. 5, p. 052419, 2021.
- A. Chertkov, G. Ryzhakov, G. Novikov, and I. Oseledets, “Optimization of functions given in the tensor train format,” arXiv preprint arXiv:2209.14808, 2022.
- D. Herman, R. Shaydulin, Y. Sun, S. Chakrabarti, S. Hu, P. Minssen, A. Rattew, R. Yalovetzky, and M. Pistoia, “Constrained optimization via quantum zeno dynamics,” Communications Physics, vol. 6, no. 1, p. 219, 2023.
- P. Niroula, R. Shaydulin, R. Yalovetzky, P. Minssen, D. Herman, S. Hu, and M. Pistoia, “Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer,” Scientific Reports, vol. 12, no. 1, p. 17171, 2022.